Gilles Thomas Research Scientist/Engineer - Senior gthomas@apl.washington.edu Phone 206-221-4590 |
Education
M.S. General Engineering, Ecole Centrale de Nantes, 2014
M.S. Mechatronic Engineering, Universidade de Sao Paulo, 2014
M.S. Mechatronic Engineering, Universidade de Sao Paulo, 2015
Ph.D. Biomedical Engineering, Universite Lyon, 2019
Publications |
2000-present and while at APL-UW |
![]() |
Respiratory motion effects and mitigation strategies on boiling histotripsy in porcine liver and kidney Ponomarchuk, E.M., G.P.L. Thomas, M. Song, Y.-N. Wang, S. Totten, G.R. Schade, V.A. Khokhlova, and T.D. Khokhlova, "Respiratory motion effects and mitigation strategies on boiling histotripsy in porcine liver and kidney," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 72, 837-846, doi:10.1109/TUFFC.2025.3559458, 2025. |
More Info |
1 Jun 2025 ![]() |
![]() |
|||||
Boiling histotripsy (BH) is a pulsed high-intensity focused ultrasound (HIFU)-based method of extracorporeal nonthermal tissue disintegration under real-time ultrasound (US) guidance. Respiratory motion in abdominal targets can affect BH precision and completeness. This study compares two motion mitigation strategies based on pulse/echo US motion tracking: robotic arm-based unidirectional motion compensation by HIFU transducer manipulation and BH pulse gating during expiratory pause. BH ablations were generated in the liver and kidney of anesthetized pigs with 210-ms pulses using a 256-element 1.5-MHz HIFU array. A coaxial US imaging probe was used for targeting, tracking skin surface, and monitoring real-time bubble activity. The axial [anterior-posterior (AP)] displacement of the skin surface was found to be synchronous with liver and kidney motion in both cranio-caudal (CC) and AP directions. BH lesions were produced either with no motion mitigation, or with pulse gating, or with 1-D motion compensation. Dimensions of completely fractionated and affected tissue areas were measured histologically. In liver, gating and motion compensation improved fractionation completeness within targeted volumes and reduced off-target tissue damage in AP direction versus no motion mitigation; only gating reduced off-target damage in CC direction. In kidney, gating improved BH completeness in both directions versus no mitigation, but did not affect off-target damage due to lower displacement amplitudes in the kidney comparable with gating tolerance limits. In both liver and kidney, gating increased treatment time by 24%. These results suggest that BH pulse gating using US-based AP skin surface tracking is an adequate approach for treating organs with pronounced 3-D respiratory motion. |
![]() |
xDDx: A numerical toolbox for ultrasound transducer characterization and design with acoustic holography Rosnitskiy, P.B., O.A. Sapozhnikov, V.A. Khokhlova, W. Kreider, S.A. Tsysar, G.P.L. Thomas, K. Contreras, and T.D. Khokhlova, "xDDx: A numerical toolbox for ultrasound transducer characterization and design with acoustic holography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 72, 564-580, doi:10.1109/TUFFC.2025.3542405, 2025. |
More Info |
1 May 2025 ![]() |
![]() |
|||||
Transient acoustic holography is a useful technique for characterization of ultrasound transducers. It involves hydrophone measurements of the 2-D distribution of acoustic pressure waveforms in a transverse plane in front of the transducer—a hologram—and subsequent numerical forward projection (FP) or backward projection of the ultrasound field. This approach enables full spatiotemporal reconstruction of the acoustic field, including the vibrational velocity at the transducer surface. This allows identification of transducer defects as well as structural details of the radiated acoustic field such as sidelobes and hot spots. However, numerical projections may be time-consuming ( 1010 1011 operations with complex exponents). Moreover, backprojection from the measurement plane to the transducer surface is sensitive to misalignment between the axes of the positioning system and the axes associated with the transducer. This article presents an open-access transducer characterization toolbox for use in MATLAB or Octave on Windows computers (https://github.com/pavrosni/xDDx/releases). The core algorithm is based on the Rayleigh integral implemented in C++ executables for graphics and central processing units (GPUs and CPUs). The toolbox includes an automated procedure for correcting axes misalignments to optimize the visualization of transducer surface vibrations. Beyond using measured holograms, the toolbox can also simulate the fields radiated by user-defined transducers. Measurements from two focused 1.25-MHz 12-element sector transducers (apertures of 87 mm and focal distances of 65 and 87 mm) were used with the toolbox for demonstration purposes. Simulation speed tests for different computational devices showed a range of 0.2 s 3 min for GPUs and 1.6 s 57 min for CPUs. |
![]() |
Advancing boiling histotripsy dose in ex vivo and in vivo renal tissues via quantitative histological analysis and shear wave elastography Ponomarchuk, E., G. Thomas, M. Song, Y.-N. Wang, S. Totten, G. Schade, J. Thiel, M. Bruce, V. Khokhlova, and T. Khokhlova, "Advancing boiling histotripsy dose in ex vivo and in vivo renal tissues via quantitative histological analysis and shear wave elastography," Ultrasound Med. Biol., 50, 1936-1944, doi:10.1016/j.ultrasmedbio.2024.08.022, 2024. |
More Info |
1 Dec 2024 ![]() |
![]() |
|||||
Objective |