Campus Map

Suzanne Dickinson

Oceanographer IV





Research Interests

Data Analysis, Computer Programming


Suzanne Dickinson processes and analyzes satellite observations over the world's oceans as part of an effort to better understand ocean-atmosphere coupling and other dynamical ocean processes. The primary datasets include wind vectors derived from scatterometer measurements and other satellite measurements.

Ms. Dickinson is also responsible for processing and analyzing other datasets, including TAO buoy data and general circulation model analyses, and for data comparisons to check measurement accuracy. She has authored or co-authored technical reports and refereed journal publications and develops analysis and graphics programs. Ms. Dickinson has been with the Laboratory since 1997.

Department Affiliation

Polar Science Center


B.A. Physics, Boston University, 1984

M.S. Atmospheric Sciences, University of Washington, 1994


2000-present and while at APL-UW

The cyclonic mode of Arctic Ocean circulation

Morison, J., R. Kwok, S. Dickinson, R. Andersen, C. Peralta-Ferriz, D. Morison, I. Rigor, S. Dewey, and J. Guthrie, "The cyclonic mode of Arctic Ocean circulation," J. Phys. Oceanogr., 51, 1053–1075, doi:10.1175/JPO-D-20-0190.1, 2021.

More Info

1 Apr 2021

Arctic Ocean surface circulation change should not be viewed as the strength of the anticyclonic Beaufort Gyre. While the Beaufort Gyre is a dominant feature of average Arctic Ocean surface circulation, empirical orthogonal function analysis of dynamic height (1950–1989) and satellite altimetry-derived dynamic ocean topography (2004–-2019) show the primary pattern of variability in its cyclonic mode is dominated by a depression of the sea surface and cyclonic surface circulation on the Russian side of the Arctic Ocean. Changes in surface circulation after AO maxima in 1989 and 2007–08 and after an AO minimum in 2010, indicate the cyclonic mode is forced by the Arctic Oscillation (AO) with a lag of about one year. Associated with a one standard deviation increase in the average AO starting in the early 1990s, Arctic Ocean surface circulation underwent a cyclonic shift evidenced by increased spatial-average vorticity. Under increased AO, the cyclonic mode complex also includes increased export of sea ice and near-surface freshwater, a changed path of Eurasian runoff, a freshened Beaufort Sea, and weakened cold halocline layer that insulates sea ice from Atlantic water heat, an impact compounded by increased Atlantic Water inflow and cyclonic circulation at depth. The cyclonic mode's connection with the AO is important because the AO is a major global scale climate index predicted to increase with global warming. Given the present bias in concentration of in situ measurements in the Beaufort Gyre and Transpolar Drift, a coordinated effort should be made to better observe the cyclonic mode.

Regional variability of arctic sea ice seasonal change climate indicators from a passive microwave climate data record

Bliss, A.C., M. Steele, G. Peng, W.N. Meier, and S. Dickinson, "Regional variability of arctic sea ice seasonal change climate indicators from a passive microwave climate data record," Environ. Res. Lett., 14, doi:10.1088/1748-9326/aafb84, 2019.

More Info

26 Mar 2019

The seasonal evolution of Arctic sea ice can be described by the timing of key dates of sea ice concentration (SIC) change during its annual retreat and advance cycle. Here, we use SICs from a satellite passive microwave climate data record to identify the sea ice dates of opening (DOO), retreat (DOR), advance (DOA), and closing (DOC) and the periods of time between these events. Regional variability in these key dates, periods, and sea ice melt onset and freeze-up dates for 12 Arctic regions during the melt seasons of 1979–2016 is investigated. We find statistically significant positive trends in the length of the melt season (outer ice-free period) for most of the eastern Arctic, the Bering Sea, and Hudson and Baffin Bays with trends as large as 11.9 d decade-1 observed in the Kara Sea. Trends in the DOR and DOA contribute to statistically significant increases in the length of the open water period for all regions within the Arctic Ocean ranging from 3.9 to 13.8 d decade-1. The length of the ice retreat period (DOR−DOO) ranges from 17.1 d in the Sea of Okhotsk to 41 d in the Greenland Sea. The length of the ice advance period (DOC–DOA) is generally much shorter and ranges from 17.9 to 25.3 d in the Sea of Okhotsk and Greenland Sea, respectively. Additionally, we derive the extent of the seasonal ice zone (SIZ) and find statistically significant negative trends (SIZ is shrinking) in the Sea of Okhotsk, Baffin Bay, Greenland Sea, and Barents Sea regions, which are geographically open to the oceans and influenced by reduced winter sea ice extent. Within regions of the Arctic Ocean, statistically significant positive trends indicate that the extent of the SIZ is expanding as Arctic summer sea ice declines.

Temporal means and variability of Arctic sea ice melt and freeze season climate indicators using a satellite climate data record

Peng, G., M. Steele, A.C. Bliss, W.N. Meier, and S. Dickinson, "Temporal means and variability of Arctic sea ice melt and freeze season climate indicators using a satellite climate data record," Remote Sens., 10, 1328, doi:10.3390/rs10091328, 2018.

More Info

21 Aug 2018

Information on the timing of Arctic snow and ice melt onset, sea ice opening, retreat, advance, and closing, can be beneficial to a variety of stakeholders. Sea ice modelers can use information on the evolution of the ice cover through the rest of the summer to improve their seasonal sea ice forecasts. The length of the open water season (as derived from retreat/advance dates) is important for human activities and for wildlife. Long-term averages and variability of these dates as climate indicators are beneficial to business strategic planning and climate monitoring. In this study, basic characteristics of temporal means and variability of Arctic sea ice climate indicators derived from a satellite-based climate data record from March 1979 to February 2017 melt and freeze seasons are described. Our results show that, over the Arctic region, anomalies of snow and ice melt onset, ice opening and retreat dates are getting earlier in the year at a rate of more than 5 days per decade, while that of ice advance and closing dates are getting later at a rate of more than 5 days per decade. These significant trends resulted in significant upward trends for anomalies of inner and outer ice-free periods at a rate of nearly 12 days per decade. Small but significant downward trends of seasonal ice loss and gain period anomalies were also observed at a rate of –1.48 and –0.53 days per decade, respectively. Our analyses also demonstrated that the means of these indicators and their trends are sensitive to valid data masks and regional averaging methods.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center