Campus Map

Melissa Moulton

Research Scientist/Engineer Principal

Affiliate Assistant Professor, Civil and Environmental Engineering





Research Interests

Coastal and Nearshore Processes, Environmental Fluid Mechanics, Remote Sensing, Beach Hazard Prediction


Dr. Moulton is a coastal physical oceanographer who studies the dynamics and impacts of rip currents, coastal storms, and inner shelf processes using remote sensing, in situ observations, laboratory experiments, and numerical models.


B.A. Physics, Amherst College, 2009

Ph.D. Physical Oceanography, MIT/WHOI Joint Program, 2016


2000-present and while at APL-UW

Exchange of plankton, pollutants, and particles across the nearshore region

Moulton, M., S.H. Suanda, J.C. Garwood, N. Kumar, M.R. Fewings, and J.M. Pringle, "Exchange of plankton, pollutants, and particles across the nearshore region," Annu. Rev. Mar. Science, 15, 167-202, doi:10.1146/annurev-marine-032122-115057, 2023.

More Info

1 Jan 2023

Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.

Internal bore evolution across the shelf near Pt. Sal CA interpreted as a gravity current

Spydell, M.S., and 15 others including C. Chickadel, M. Moulton, and J. Thomson, "Internal bore evolution across the shelf near Pt. Sal CA interpreted as a gravity current," J. Phys. Oceanogr., 51, 3629-3650, doi:10.1175/JPO-D-21-0095.1, 2021.

More Info

11 Nov 2021

Off the central California coast near Pt. Sal, a large amplitude internal bore was observed for 20 h over 10 km cross-shore, or 100 m to 10 m water depth (D), and 30 km alongcoast by remote sensing, 39 in situ moorings, ship surveys, and drifters. The bore is associated with steep isotherm displacements representing a significant fraction of D. Observations were used to estimate bore arrival time tB, thickness h, and bore and non-bore (ambient) temperature difference ΔT, leading to reduced gravity g'. Bore speeds c, estimated from mapped tB, varied from 0.25 m s-1 to 0.1 m s-1 from D = 50 m to D = 10 m. The h varied from 5 to 35 m, generally decreased with D, and varied regionally alongisobath. The bore ΔT varied from 0.75 to 2.15°C. Bore evolution was interpreted from the perspective of a two-layer gravity current. Gravity current speeds U, estimated from the local bore h and g compared well to observed bore speeds throughout its cross-shore propagation. Linear internal wave speeds based on various stratification estimates result in larger errors. On average bore thickness h = D/2, with regional variation, suggesting energy saturation. From 50–10 m depths, observed bore speeds compared well to saturated gravity current speeds and energetics that depend only on water depth and shelf-wide mean g'. This suggests that this internal bore is the internal wave analogue to a saturated surfzone surface gravity bore. Alongcoast variations in pre-bore stratification explain variations in bore properties. Near Pt. Sal, bore Doppler shifting by barotropic currents is observed.

Modeled three-dimensional currents and eddies on an alongshore-variable barred beach

Baker, C.M., M. Moulton, B. Raubenheimer, S. Elgar, and N. Kumar, "Modeled three-dimensional currents and eddies on an alongshore-variable barred beach," J. Geophys. Res., 126, doi:10.1029/2020JC016899, 2021.

More Info

1 Jul 2021

Circulation in the nearshore region, which is critical for material transport along the coast and between the surf zone and the inner shelf, includes strong vortical motions. The horizontal length scales and vertical structure associated with vortical motions are not well documented on alongshore-variable beaches. Here, a three-dimensional phase-resolving numerical model, Simulating WAves till SHore (SWASH), is compared with surfzone waves and flows on a barred beach, and is used to investigate surfzone eddies. Model simulations with measured bathymetry reproduce trends in the mean surfzone circulation patterns, including alongshore currents and rip current circulation cells observed for offshore wave heights from 0.5 to 2.0 m and incident wave directions from 0 to 15° relative to shore normal. The length scales of simulated eddies, quantified using the alongshore wavenumber spectra of vertical vorticity, suggest that increasing wave directional spread intensifies small-scale eddies (O(10) m). Simulations with bathymetric variability ranging from alongshore uniform to highly alongshore variable indicate that large-scale eddies (O(100) m) may be enhanced by surfzone bathymetric variability, whereas small-scale eddies (O(10) m) are less dependent on bathymetric variability. The simulated vertical dependence of the magnitude and mean length scale (centroid) of the alongshore wavenumber spectra of vertical vorticity and very low-frequency (f ≈ 0.005 Hz) currents is weak in the outer surf zone, and decreases toward the shoreline. The vertical dependence in the simulations may be affected by the vertical structure of turbulence, mean shear, and bottom boundary layer dynamics.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center