Campus Map

Melissa Moulton

Research Scientist/Engineer Principal

Affiliate Assistant Professor, Civil and Environmental Engineering





Research Interests

Coastal and Nearshore Processes, Environmental Fluid Mechanics, Remote Sensing, Beach Hazard Prediction


Dr. Moulton is a coastal physical oceanographer who studies the dynamics and impacts of rip currents, coastal storms, and inner shelf processes using remote sensing, in situ observations, laboratory experiments, and numerical models.


B.A. Physics, Amherst College, 2009

Ph.D. Physical Oceanography, MIT/WHOI Joint Program, 2016


2000-present and while at APL-UW

Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys

Rainville, E., J. Thomson, M. Moulton, and M. Derakhti, "Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys," Earth Syst. Sci. Data, 15, 5135-5151, doi:10.5194/essd-15-5135-2023, 2023.

More Info

27 Nov 2023

Surface gravity wave breaking occurs along coastlines in complex spatial and temporal patterns that significantly impact erosion, scalar transport, and flooding. Numerical models are used to predict wave breaking and associated processes but many lack sufficient evaluation with observations. To fill the need for more nearshore wave measurements, we deployed coherent arrays of small-scale, free-drifting buoys named microSWIFTs. The microSWIFT is a small buoy equipped with a GPS module to measure the buoy's position, horizontal velocities, and an inertial measurement unit (IMU) to directly measure the buoy's rotation rates, accelerations, and heading. Measurements were collected over a 27 d field experiment in October 2021 at the US Army Corps of Engineers Field Research Facility in Duck, NC. The microSWIFTs were deployed as a series of coherent arrays, meaning they all sampled simultaneously with a common time reference, leading to a rich spatial and temporal dataset during each deployment. Measurements spanned offshore significant wave heights ranging from 0.5 to 3 m and peak wave periods ranging from 5 to 15 s over the entire experiment.

The completed dataset consists of 67 deployment files that contain 971 drift tracks that contain all associated data. We use an attitude and heading reference system (AHRS) 9-degrees-of-freedom Kalman filter to rotate the measured accelerations from the reference frame of the buoy to the Earth reference frame. We then use the corrected accelerations to compute the vertical velocity and sea-surface elevation. We give example evaluations of wave spectral energy density estimates from individual microSWIFTs compared with a nearby acoustic wave and current (AWAC) sensor. A zero-crossing algorithm is applied to each buoy time series of sea-surface elevation to extract realizations of measured surface gravity waves, yielding 116 307 wave realizations throughout the experiment. We also compute significant wave height estimates from the aggregate wave realizations and compare these estimates with the nearby AWAC estimates. An example of spatial variability in cross-shore velocity and vertical acceleration is explored. Wave-breaking events, detected by high-intensity vertical acceleration peaks, are explored, and the cross-shore distribution of all breaking events detected in the experiment is shown. A total of 3419 wave-breaking events were detected across the entire experiment. These data are available at https://doi.org/10.5061/dryad.hx3ffbgk0 (Rainville et al., 2023) and will be used to investigate nearshore wave kinematics, transport of buoyant particles, and wave-breaking processes.

Remotely sensed short-crested breaking waves in a laboratory directional wave basin

Baker, C.M., M. Moulton, M.L. Palmsten, K. Brodie, E. Nuss, and C.C. Chickadel, "Remotely sensed short-crested breaking waves in a laboratory directional wave basin," Coastal Eng., 183, doi:10.1016/j.coastaleng.2023.104327, 2023.

More Info

1 Aug 2023

Short-crested breaking waves that result from directionally spread wave conditions dissipate energy and generate turbulence within the surf zone, altering sediment transport processes, wave runup, and forces on structures. Additionally, vertical vorticity generated near crest ends during breaking, which depends on the gradient in wave height along a crest, may enhance nearshore dispersion of pollutants, nutrients, and larvae. Although directionally spread irregular wave fields are ubiquitous on ocean and large lake coastlines, the dependence of short-crested breaking wave characteristics (including the along-crest length and number of crest ends) on offshore wave conditions is not well established. To assess this relationship, laboratory experiments with alongshore-uniform barred bathymetry were performed in a large-scale directional wave basin. A three-dimensional scanning lidar, trinocular camera stereo processing methods, and in situ measurements were used to study short-crested wave field breaking characteristics in the laboratory, yielding a dataset with dense spatio-temporal coverage relative to prior laboratory or field measurements. Wave height estimates are similar for remotely sensed and in situ observations, except in the outer surf zone where plunging breaking occurred. Directional wave properties estimated with an array of in situ or remotely sensed sea-surface elevation estimates are similar and yield smaller directional spreads than single-point colocated pressure and velocity based in situ estimates when waves are less directionally spread. Using a breaking crest identification procedure combining visible imagery and stereo sea-surface elevation, we find that the average along-crest length of breaking waves decreases and the average number of crest ends increases with increasing directional spread. Relative to observations, a parameterized relationship between directional spread and crest characteristics based on theory for non-breaking, refracting waves generally over-estimates breaking crest lengths and is similar to or underestimates the total number of crest ends observed in the surf zone. The wave-field-dependent breaking-wave characteristics examined in the laboratory with remote sensing techniques can inform future investigations of depth-limited short-crested wave breaking and resulting surfzone eddy processes.

Exchange of plankton, pollutants, and particles across the nearshore region

Moulton, M., S.H. Suanda, J.C. Garwood, N. Kumar, M.R. Fewings, and J.M. Pringle, "Exchange of plankton, pollutants, and particles across the nearshore region," Annu. Rev. Mar. Science, 15, 167-202, doi:10.1146/annurev-marine-032122-115057, 2023.

More Info

1 Jan 2023

Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center