Campus Map

John Mickett

Senior Oceanographer





Department Affiliation

Ocean Physics


B.S. Marine Science, U.S. Coast Guard Academy, 1994

M.S. Physical Oceanography, University of Washington - Seattle, 2002

Ph.D. Physical Oceanography, University of Washington - Seattle, 2007


Submesoscale Mixed-Layer Dynamics at a Mid-Latitude Oceanic Front

SMILE: the Submesoscale MIxed-Layer Eddies experiment

More Info

1 Mar 2017

This experiment is aimed at increasing our understanding of the role of lateral processes in mixed-layer dynamics through a series of ship surveys and Lagrangian array deployments. Instrument deployments and surveys target the upper ocean's adjustment to winter atmospheric forcing events in the North Pacific subtropical front, roughly 800 km north of Hawaii.

This study will improve understanding of 1–10-km scale lateral processes in three-dimensional mixed-layer dynamics in a region of above-average atmospheric forcing, typical mid-ocean mesoscale advection and straining, and typical submesoscale activity. The results will improve the physical basis of mixed-layer parameterizations, leading to better model predictions of air-sea fluxes, gas transfer, and biological productivity.

Tasmania Internal Tide Experiment

The Tasmanian continental slope will be instrumented with a range of tools including moored profiler, chi-pods, CTDs, and gliders to understand the process, strength, and distribution of ocean mixing from breaking internal waves.

27 Nov 2011

Samoan Passage Abyssal Mixing

The Samoan Passage, 5500 m beneath the sea surface, is one of the "choke points" in the abyssal circulation. A veritable river of Antarctic Bottom water flows through it on its way into the North Pacific. As it enters the constriction, substantial turbulence, hydraulic processes and internal waves must occur, which modify the water. The overall goal is to understand these deep processes and the way they impact the flow, and to develop a strategy for eventually monitoring the flow through the Passage.

27 Sep 2011

More Projects


Environmental Sample Processor: A Sentry for Toxic Algal Blooms off the Washington Coast

An undersea robot that measures harmful algal species has been deployed by APL, UW, and NOAA researchers off the Washington coast near La Push. Algal bloom toxicity data are relayed to shore in near-real time and displayed through the NANOOS visualization system. The Environmental Sample Processor, or ESP, is taking measurements near the Juan de Fuca eddy, which is a known incubation site for toxic blooms that often travel toward coastal beaches, threatening fisheries and human health.

22 Jun 2016

ORCA Tracks the 'Blob'

A 'blob' of very warm surface water developed in the northeastern Pacific Ocean in 2014–2015 and its influence extended to the inland waters of Puget Sound throughout the summer of 2015. The unprecedented conditions were tracked by the ORCA (Oceanic Remote Chemical Analyzer) buoy network — an array of six heavily instrumented moored buoys in the Sound. ORCA data provided constant monitoring of evolving conditions and allowed scientists to warn of possible fish kill events in the oxygen-starved waters of Hood Canal well in advance.

The ORCA network is maintained by a partnership among APL-UW, the UW College of the Environment, and the UW School of Oceanography.

3 Nov 2015

ArcticMix 2015

APL-UW physical oceanographers John Mickett and Mike Gregg joined SIO colleagues during September 2015 in the Beaufort Sea aboard the R/V Sikuliaq to measure upper ocean mixing that billows heat from depth to the surface. These mixing dynamics may be an important factor in hastening sea ice melt during summer and delaying freeze-up in the fall.

14 Oct 2015

More Videos


2000-present and while at APL-UW

Destratification and restratification of the spring boundary layer in a subtropical front

Kunze, E., J.B. Mickett, and J.B. Girton, "Destratification and restratification of the spring boundary layer in a subtropical front," J. Phys. Oceanogr., EOR, doi:10.1175/JPO-D-21-0003.1, 2021.

More Info

28 May 2021

Destratification and restratification of a ~50-m thick surface boundary layer in the North Pacific Subtropical Front are examined during 24–31 March 2017 in the wake of a storm using a ~ 5-km array of 23 chi-augmented EM profiling floats, as well as towyo and ADCP ship surveys, shipboard air-sea surface fluxes and parameterized shortwave penetrative radiation. During the first four days, nocturnal destabilizing buoyancy-fluxes mixed the surface layer over almost its full depth every night followed by restratification to N ~ 2 x 10-3 rad s-1 during daylight. Starting on 28 March, nocturnal destabilizing buoyancy-fluxes weakened because weakening winds reduced the latent heat-flux. Shallow mixing and stratified transition layers formed above ~20-m depth. The remnant layer in the lower part of the surface layer was insulated from destabilizing surface forcing. Penetrative radiation, turbulent buoyancy-fluxes and horizontal buoyancy advection all contribute to restratification of this remnant layer, closing the budget to within measurement uncertainties. Buoyancy advective restratification (slumping) plays a minor role. Before 28 March, measured advective restratificationt is confined to daytime, is often destratifying and is much stronger than predictions of geostrophic adjustment, mixed-layer eddy instability and Ekman buoyancy-flux predictions because of storm-forced inertial shear. Starting on 28 March, the subinertial envelope of measured buoyancy advective restratification in the remnant layer resembles MLE parameterization predictions.

An autonomous platform for near real-time surveillance of harmful algae and their toxins in dynamic coastal shelf environments

Moore, S.K., J.B. Mickett, G.J. Doucette, N.G. Adams, C.M. Mikulski, J.M. Birch, B. Roman, N. Michel-Hart, and J.A. Newton, "An autonomous platform for near real-time surveillance of harmful algae and their toxins in dynamic coastal shelf environments," J. Mar. Sci. Eng., 9, doi:10.3390/jmse9030336, 2021.

More Info

18 Mar 2021

Efforts to identify in situ the mechanisms underpinning the response of harmful algae to climate change demand frequent observations in dynamic and often difficult to access marine and freshwater environments. Increasingly, resource managers and researchers are looking to fill this data gap using unmanned systems. In this study we integrated the Environmental Sample Processor (ESP) into an autonomous platform to provide near real-time surveillance of harmful algae and the toxin domoic acid on the Washington State continental shelf over a three-year period (2016–2018). The ESP mooring design accommodated the necessary subsystems to sustain ESP operations, supporting deployment durations of up to 7.5 weeks. The combination of ESP observations and a suite of contextual measurements from the ESP mooring and a nearby surface buoy permitted an investigation into toxic Pseudo-nitzschia spp. bloom dynamics. Preliminary findings suggest a connection between bloom formation and nutrient availability that is modulated by wind-forced coastal-trapped waves. In addition, high concentrations of Pseudo-nitzschia spp. and elevated levels of domoic acid observed at the ESP mooring location were not necessarily associated with the advection of water from known bloom initiation sites. Such insights, made possible by this autonomous technology, enable the formulation of testable hypotheses on climate-driven changes in HAB dynamics that can be investigated during future deployments.

Microstructure mixing observations and fine scale parameterizations in the Beaufort Sea

Fine, E.C., M.H. Alford, J.A. MacKinnon, and J.B. Mickett, "Microstructure mixing observations and fine scale parameterizations in the Beaufort Sea," J. Phys. Oceanogr., 51, 19-35, doi:10.1175/JPO-D-19-0233.1, 2020.

More Info

1 Jan 2021

In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72° 35'N, 145°1'W. Microstructure measurements from a free-falling profiler survey showed very low [O (10-10 W kg-1)] turbulent kinetic energy dissipation rates (ε). A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain (Rω) and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1 to 2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3–50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 hours) from 25–125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε = 6x10-10 W kg-1 at 30 m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.

More Publications

In The News

Ocean trash: What you need to know

KCTS9/EarthFix , Ken Christensen

Ocean currents carry man-made debris to remote corners of the planet—even to places mostly untouched by people. And that makes it difficult to clean up, as APL-UW's Senior Oceanographer John Mickett demonstrates during his recent sojourn to Vancouver Island, B.C. to recover a wayward research buoy.

11 Dec 2017

UW, NOAA deploy ocean robot to monitor harmful algal blooms off Washington coast

UW News and Information, Hannah Hickey

John Mickett, an oceanographer at the UW Applied Physics Laboratory, led the deployment of the new instrument with Stephanie Moore, a scientist at NOAA’s Northwest Fisheries Science Center, as part of a larger collaborative project.

25 May 2016

Buoy deployed in Bellingham Bay to chart health of Puget Sound

KING 5 News, Alison Morrow

Oceanographers deployed a buoy in Bellingham Bay on Thursday that will chart the health of Puget Sound. It joins a half-dozen other buoys, but this is the only one in the north Puget Sound. It is equipped with several pieces of advanced technology that will monitor everything from salinity, temperature and weather changes.

11 Feb 2016

More News Items


Real-time Ocean Mooring for the Environmental Sample Processor

Record of Invention Number: 48554

John Mickett, Nick Michel-Hart


20 Feb 2019

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center