APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Geoff Shilling

Principal Engineer

Email

gbs@apl.washington.edu

Phone

206-221-7261

Department Affiliation

Ocean Physics

Education

B.S. Mathematics & Physics, Bates College, 1988

Publications

2000-present and while at APL-UW

Improving situational awareness in the Arctic Ocean

Rainville, L., and 22 others including C.M. Lee and G.B. Shilling, "Improving situational awareness in the Arctic Ocean," Front. Mar. Sci., 7, doi:10.3389/fmars.2020.581139, 2020.

More Info

25 Nov 2020

To successfully operate in a harsh environment like the Arctic Ocean, one must be able to understand and predict how that environment will evolve over different spatial and temporal scales. This is particularly challenging given the on-going and significant environmental changes that are occurring in the region. Access to the most recent environmental information provides timely knowledge that enables ship-based operations to proceed efficiently, effectively and safely in this difficult arena. Knowledge of the evolving environmental conditions during a field campaign is critical for effective planning, optimal execution of sampling strategies, and to provide a broader context to data collected at specific times and places. We describe the collaborations and processes that enabled an operational system to be developed to provide a remote field-team, located on USCGC Healy in the Beaufort Sea, with near real-time situational awareness information regarding the weather, sea ice conditions, and oceanographic processes. The developed system included the punctual throughput of near real-time products such as satellite imagery, meteorological forecasts, ice charts, model outputs, and up to date locations of key sea ice and ocean-based assets. Science and operational users, as well as onshore personnel, used this system for real-time practical considerations such as ship navigation, and to time scientific operations to ensure the appropriate sea ice and weather conditions prevailed. By presenting the outputs of the system within the context of case studies our results clearly demonstrate the benefits that improved situational awareness brings to ship-based operations in the Arctic Ocean, both today and in the future.

Multi-month dissipation estimates using microstructure from autonomous underwater gliders

Rainville, L., J.I. Gobat, C.M. Lee, and G.B. Shilling, "Multi-month dissipation estimates using microstructure from autonomous underwater gliders," Oceanography, 30, 49-50, doi:10.5670/oceanog.2017.219, 2017.

More Info

1 Jun 2017

Ocean turbulence is inherently episodic and patchy. It is the primary mechanism that transforms water mass properties and drives the exchanges of heat, freshwater, and momentum across the water column. Given its episodic nature, capturing the net impact of turbulence via direct measurements requires sustained observations over extended temporal and/or broad spatial scales.

Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider

Klinck, H., D.K. Mellinger, K. Klinck, N.M. Bogue, J.C. Luby, W.A. Jump, G.B. Shilling, T. Litchendorf, A.S. Wood, G.S. Schorr, and R.W. Baird, "Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider," Plos One, 7, e36128, doi:10.1371/journal.pone.0036128, 2012.

More Info

18 May 2012

In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle — a glider — equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species.

More Publications

Inventions

PMAR-XL

Record of Invention Number: 48220

Jason Gobat, Geoff Shilling, Chris Siani

Disclosure

1 Dec 2017

Deepglider, Autonomous Underwater Vehicle

Record of Invention Number: 47946

Geoff Shilling

Disclosure

17 Jan 2017

Temperature Microstructure Instrument Controller Logger

Record of Invention Number: 47906

Luc Rainville, Jason Gobat, Adam Huxtable, Geoff Shilling

Disclosure

6 Dec 2016

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close