Campus Map

Roxanne Carini

Senior Oceanographer





Research Interests

Coastal Hydrodynamics, Nearshore Wave Physics, Coastal Hazards, Remote Sensing


Roxanne Carini is a Research Associate with NANOOS, the Northwest Association of Networked Ocean Observing Systems, working to provide Pacific Northwest stakeholders with high-quality ocean and coastal data, tools, and information they need to make responsive and responsible decisions about safety, livelihoods, and stewardship.

During her Ph.D. at the University of Washington, Carini conducted research at the intersection of physical oceanography and coastal engineering. Based in the APL-UW AIRS Department, she used remote sensing technologies to observe and quantify breaking waves in the surf zone to better understand how wave forces change the coastal environment.

Following her Ph.D., Dr. Carini served as a Knauss Marine Policy Fellow at the U.S. Marine Mammal Commission. There, she worked broadly on science, policy, and communications issues, with projects including coordinating interagency reporting of federally funded marine mammal research and briefing Congressional offices on policy-relevant marine mammal science. Dr. Carini combines her research expertise, science policy communication skills, and call to serve the PNW community in her position with NANOOS.

Department Affiliation

Ocean Physics


B.S. Applied Mathematics, Yale University, 2011

M.S.C.E. Civil & Environmental Engineering, University of Washington, 2014

Ph.D. Civil & Environmental Engineering, University of Washington, 2019


2000-present and while at APL-UW

Establishing the foundation for the Global Observing System for Marine Life

Satterthwaite, E.V., and 41 others including R.J. Carini, "Establishing the foundation for the Global Observing System for Marine Life," Front. Mar. Sci., 8, doi:10.3389/fmars.2021.737416, 2021.

More Info

25 Oct 2021

Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.

Surf zone waves at the onset of breaking: 1. LIDAR and IR data fusion methods

Carini, R.J., C.C. Chickadel, and A.T. Jessup, "Surf zone waves at the onset of breaking: 1. LIDAR and IR data fusion methods," J. Geophys. Res., 126, doi:10.1029/2020JC016934, 2021.

More Info

1 Apr 2021

This is the first of a 2‐part series concerning remote observation and wave‐by‐wave analysis of the onset of breaking in the surf zone. In the surf zone, breaking waves drive nearshore circulation, suspend sediment, and promote air–sea gas exchange. Nearshore wave model predictions often diverge from in situ measurements near the break point location because common parameterizations do not account for the rapid changes that occur near the onset of breaking. This work presents extensive methodology to combine data from a line‐scanning LIDAR and thermal infrared cameras to detect breaking, classify breaker type, and measure geometric wave parameters on a wave‐by‐wave basis, which can be used to improve breaker parameterizations. Over 2,600 non‐breaking and 1,600 breaking waves are analyzed from data collected at the USACE Field Research Facility in Duck, NC, including 413 spilling and 111 plunging waves for which the onset of breaking was observed. Wave height is estimated using a spatio‐temporal method for wave tracking that preserves the sea surface elevation maximum and overcomes field of view limitations. Methods for estimating instantaneous wave speed are refined by fitting a skewed Gaussian function to each wave profile before tracking the peaks. Wave slope is estimated from a linear fit to the upper 80% of the wave face, which provides a robust metric and strong correlation with geometric wave slope defined relative to mean sea level. Finally, breaking wave face foam coverage is analyzed to assess common model assumptions about roller length for wave energy dissipation parameterizations.

Surf zone waves at the onset of breaking: 2. Predicting breaking and breaker type

Carini, R.J., C.C. Chickadel, and A.T. Jessup, "Surf zone waves at the onset of breaking: 2. Predicting breaking and breaker type," J. Geophys. Res., 126, doi:10.1029/2020JC016935, 2021.

More Info

1 Apr 2021

This is the second of a two‐part series concerning remote observation and wave‐by‐wave analysis of the onset of breaking for spilling and plunging waves in the surf zone. Nearshore phase‐averaged and phase‐resolving wave models parameterize and directly simulate wave breaking and require realistic critical values of key wave parameters, such as the depth‐limited breaking index γ, steepness, or phase speed to initialize wave breaking. Using LIDAR line‐scans and infrared imagery, we observe over 1,600 breaking waves at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, and examine these parameters on a wave‐by‐wave basis at the onset of breaking for 413 spilling and 111 plunging waves. We find that γ is maximum near the onset of breaking at values consistent with those previously observed at the FRF, but that γ for plunging waves (0.73 ≤ γP ≤ 0.81) is greater than γ for spilling waves (0.63 ≤ γS ≤ 0.71). Direct estimates of wave face slope are maximum at the onset of breaking, approximately 22° for spilling and 30° for plunging waves. Using the relationship between γ and wave face slope, we develop a threshold for the onset of breaking that is a linear function of the two parameters. Wave face slope and γ are further used together to quantify whether a spilling‐ or plunging‐type breaker is more likely. We test the Miche steepness limit on our depth‐limited breaking data and find it correctly predicts only 10% of the plunging breakers and none of the spilling breakers in the surf zone.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center