Campus Map

James Girton

Principal Oceanographer

Affiliate Assistant Professor, Oceanography





Research Interests

Overflows and Deep-Water Formation, Internal Waves, Mesoscale Eddies, Oceanic Surface and Bottom Boundary Layers, Measurements of Ocean Velocity Through Motionally-Induced Voltages


James Girton's research primarily investigates ocean processes involving small-scale turbulence and mixing and their influence on larger-scale flows. An important part of physical oceanography is the collection of novel datasets to shed new light on important physical processes, and to this end Dr. Girton's research has frequently drawn upon the widely under-utilized electromagnetic velocity profiling technique developed by Tom Sanford (his Ph.D. advisor and frequent collaborator). Instruments utilizing this technique include the expendable XCP, the full-depth free-falling AVP, and the autonomous long-duration EM-APEX. Each of these instruments has a unique role to play in the study of phenomena ranging from deep boundary currents and overflows to upper ocean mixing and internal waves.

In addition to being less well-understood elements of ocean physics, many of these phenomena are potentially important for the behavior of the large-scale ocean circulation, particularly the meridional overturning that transports heat to subpolar and polar regions and sequesters atmospheric gases in the deep ocean. Prediction of future climate change by coupled ocean-atmosphere models requires reliable predictions of ocean circulation, so physically-based improvements to parameterizations of mixing, boundary stresses and internal waves in such models are an ongoing goal.

Department Affiliation

Ocean Physics


B.A. Physics, Swarthmore College, 1993

Ph.D. Oceanography, University of Washington, 2001


Wave Glider Observations in the Southern Ocean

A Wave Glider autonomous surface vehicle will conduct a summer-season experiment to investigate ocean–shelf exchange on the West Antarctic Peninsula and frontal air–sea interaction over both the continental shelf and open ocean.

More Info

4 Sep 2019

Southern Ocean climate change is at the heart of the ocean's response to anthropogenic forcing. Variations in South Polar atmospheric circulation patterns, fluctuations in the strength and position of the Antarctic Circumpolar Current, and the intertwining intermediate deep water cells of the oceanic meridional overturning circulation have important impacts on the rate of ocean carbon sequestration, biological productivity, and the transport of heat to the melting continental ice shelves.

Submesoscale Mixed-Layer Dynamics at a Mid-Latitude Oceanic Front

SMILE: the Submesoscale MIxed-Layer Eddies experiment

More Info

1 Mar 2017

This experiment is aimed at increasing our understanding of the role of lateral processes in mixed-layer dynamics through a series of ship surveys and Lagrangian array deployments. Instrument deployments and surveys target the upper ocean's adjustment to winter atmospheric forcing events in the North Pacific subtropical front, roughly 800 km north of Hawaii.

This study will improve understanding of 1–10-km scale lateral processes in three-dimensional mixed-layer dynamics in a region of above-average atmospheric forcing, typical mid-ocean mesoscale advection and straining, and typical submesoscale activity. The results will improve the physical basis of mixed-layer parameterizations, leading to better model predictions of air-sea fluxes, gas transfer, and biological productivity.

Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)

DIMES is a US/UK field program aimed at measuring diapycnal and isopycnal mixing in the Southern Ocean, along the tilting isopycnals of the Antarctic Circumpolar Current.



2000-present and while at APL-UW

Constraining Southern Ocean air–sea–ice fluxes through enhanced observations

Swart, S., and 19 others including J. Thomson and J. Girton, "Constraining Southern Ocean air–sea–ice fluxes through enhanced observations," Front. Mar. Sci., 6, 421, doi:10.3389/fmars.2019.00421, 2019.

More Info

31 Jul 2019

Air–sea and air–sea–ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a 'knowledge gap' that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.

Squeeze dispersion and the effective diapycnal diffusivity of oceanic tracers

Wagner, G.L., G. Flierl, R. Ferrari, G. Voet, G.S. Carter, M.H. Alford, and J.B. Girton, "Squeeze dispersion and the effective diapycnal diffusivity of oceanic tracers," 46, 5378-5386, doi:10.1029/2019GL082458, 2019.

More Info

28 May 2019

We describe a process called "squeeze dispersion" in which the squeezing of oceanic tracer gradients by waves, eddies, and bathymetric flow modulates diapycnal diffusion by centimeter to meter‐scale turbulence. Due to squeeze dispersion, the effective diapycnal diffusivity of oceanic tracers is different and typically greater than the average "local" diffusivity, especially when local diffusivity correlates with squeezing. We develop a theory to quantify the effects of squeeze dispersion on diapycnal oceanic transport, finding formulas that connect density‐averaged tracer flux, locally measured diffusivity, large‐scale oceanic strain, the thickness‐weighted average buoyancy gradient, and the effective diffusivity of oceanic tracers. We use this effective diffusivity to interpret observations of abyssal flow through the Samoan Passage reported by Alford et al. (2013) and find that squeezing modulates diapycnal tracer dispersion by factors between 0.5 and 3.

Autonomous control of marine floats in the presence of dynamic, uncertain ocean currents

Troesch, M., S. Chien, Y. Chao, J. Farrara, J. Girton, and J. Dunlap, "Autonomous control of marine floats in the presence of dynamic, uncertain ocean currents," Rob. Auton. Syst., 108, 100-114, doi:10.1016/j.robot.2018.04.004, 2018.

More Info

1 Oct 2018

A methodology is described for control of vertically profiling floats that uses an imperfect predictive model of ocean currents. In this approach, the floats have control only over their depth. This control authority is combined with an imperfect model of ocean currents to attempt to force the floats to maintain position. First, the impact of model accuracy on the ability to station keep (e.g. maintain X–Y position) using simulated planning and nature (ground-truth in simulation) models is studied. In this study, the impact of batch versus continuous planning is examined. In batch planning the float depth plan is derived for an extended period of time and then executed open loop. In continuous planning the depth plan is updated with the actual position and the remainder of the plan re-planned based on the new information. In these simulation results are shown that (a) active control can significantly improve station keeping with even an imperfect predictive model and (b) continuous planning can mitigate the impact of model inaccuracy. Second, the effect of using heuristic path completion estimators in search are studied. In general, using a more conservative estimator increases search quality but commensurately increases the amount of search and therefore computation time. Third are presented results from an April 2015 deployment in the Pacific Ocean that show that even with an imperfect model of ocean currents, model-based control can enhance float control performance.

More Publications

In The News

UW team sending autonomous surfboard to explore Antarctic waters

UW News, Hannah Hickey

The research project will use the Wave Glider to investigate the summer conditions near Palmer Station on the Antarctic Peninsula, to better understand how the warming ocean interacts with ice shelves that protrude from the shore. It will then head across Drake Passage, braving some of the stormiest seas on the planet.

23 Oct 2019

One year into the mission, autonomous ocean robots set a record in survey of Antarctic ice shelf

UW News, Hannah Hickey

A team of ocean robots deployed in January 2018 have, over the past year, been the first self-guided ocean robots to successfully travel under an ice sheet and return to report long-term observations.

23 Jan 2019

Underwater robots survive a year probing climate change's effects on Antarctic ice

GeekWire, Alan Boyle

A squadron of Seagliders and EM-APEX floats was sent to probe the waters beneath the Dotson Ice Shelf in Antarctica one year ago. They have transmitted their data via satellite successfully, proving that these robots and approach can work in this harsh, remote environment.

22 Jan 2019

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center