APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jim Thomson

Senior Principal Oceanographer

Professor, Civil and Environmental Engineering

Email

jthomson@apl.washington.edu

Phone

206-616-0858

Research Interests

Environmental Fluid Mechanics, Ocean Surface Waves, Marine Renewable Energy (tidal and wave), Coastal and Nearshore Processes, Ocean Instrumentation

Biosketch

Dr. Thomson studies waves, currents, and turbulence by combining field observations and remote sensing techniques

Education

B.A. Physics, Middlebury College, 2000

Ph.D. Physical Oceanography, MIT/WHOI, 2006

Projects

Hurricane Coastal Impacts

APL-UW scientists are collaborating with 10 research teams to tackle the National Oceanographic Partnership Program (NOPP) project goals: to enable better understanding and predictive ability of hurricane impacts, to serve and protect coastal communities. The APL-UW team will contribute air-deployed buoys to provide real time observations of hurricane waves and wave forcing that can be ingested by modeling groups, improving forecasts and validating hindcasts.

14 Dec 2021

Wave Glider Observations in the Southern Ocean

A Wave Glider autonomous surface vehicle will conduct a summer-season experiment to investigate ocean–shelf exchange on the West Antarctic Peninsula and frontal air–sea interaction over both the continental shelf and open ocean.

More Info

4 Sep 2019

Southern Ocean climate change is at the heart of the ocean's response to anthropogenic forcing. Variations in South Polar atmospheric circulation patterns, fluctuations in the strength and position of the Antarctic Circumpolar Current, and the intertwining intermediate deep water cells of the oceanic meridional overturning circulation have important impacts on the rate of ocean carbon sequestration, biological productivity, and the transport of heat to the melting continental ice shelves.

Wave Measurements at Ocean Weather Station PAPA

As part of a larger project to understand the impact of surface waves on the ocean mixed layer, APL-UW is measuring waves at Ocean Weather Station Papa, a long-term observational site at N 50°, W 145°.

29 Aug 2019

More Projects

Videos

microSWIFTs: Tiny Oceanographic Floats Measure Extreme Coastal Conditions

These small, inexpensive ocean drifters are the latest generation of the Surface Wave Instrument Float with Tracking (SWIFT) platform developed at APL-UW. They are being used in several collaborative research experiments to increase the density of nearshore wave observations.

19 Apr 2022

Using a Wave Energy Converter for UUV Recharge

This project demonstrates the interface required to operate, dock, and wirelessly charge an uncrewed underwater vehicle with a wave energy converter.

More Info

11 Apr 2022

Uncrewed underwater vehicles (UUVs) predominantly use onboard batteries for energy, limiting mission duration based on the amount of stored energy that can be carried by the vehicle. Vehicle recharge requires recovery using costly, human-supported vessel operations. The ocean is full of untapped energy in the form of waves that, when converted to electrical energy by a wave energy converter (WEC), can be used locally to recharge UUVs without human intervention. In this project we designed and developed a coupled WEC-UUV system, with emphasis on the systems developed to interface the UUV to the WEC.

Mapping Underwater Turbulence with Sound

More Info

9 Apr 2018

To dock at a terminal, large Washington State ferries use their powerful engines to brake, generating a lot of turbulence. Doppler sonar instruments are capturing an accurate picture of the turbulence field during docking procedures and how it affects terminal structures and the seabed. This research is a collaborative effort between APL-UW and the UW College of Engineering, Department of Civil and Environmental Engineering.

More Videos

Publications

2000-present and while at APL-UW

Variations in wave slope and momentum flux from wave–current interactions in the tropical trade winds

Iyer, S., J. Thomson, E. Thompson, and K. Drushka, "Variations in wave slope and momentum flux from wave–current interactions in the tropical trade winds," J. Geophys. Res., 127, doi:10.1029/2021JC018003, 2022.

More Info

1 Mar 2022

Observations from six Lagrangian Surface Wave Instrument Float with Tracking drifters in January–February 2020 in the northwestern tropical Atlantic during the Atlantic Tradewind Ocean–atmosphere Mesoscale Interaction Campaign are used to evaluate the influence of wave–current interactions on wave slope and momentum flux. At observed wind speeds of 4––12 ms-1, wave mean square slopes are positively correlated with wind speed. Wave-relative surface currents varied significantly, from opposing the wave direction at 0.24 ms-1 to following the waves at 0.47 ms-1. Wave slopes are 5%–10% higher when surface currents oppose the waves compared to when currents strongly follow the waves, consistent with a conservation of wave energy flux across gradients in currents. Assuming an equilibrium frequency range in the wave spectrum, wave slope is proportional to wind friction velocity and momentum flux. The observed variation in wave slope equates to a 10%–20% variation in momentum flux over the range of observed wind speeds (4–12 ms-1), with larger variations at higher winds. At wind speeds over 8 ms-1, momentum flux varies by at least 6% more than the variation expected from current-relative winds alone, and suggests that wave-current interactions can generate significant spatial and temporal variability in momentum fluxes in this region of prevailing trade winds. Results and data from this study motivate the continued development of fully coupled atmosphere-ocean-wave models.

Direct observations of the role of lateral advection of sea ice meltwater in the onset of autumn freeze up

Crews, L., C.M. Lee, L. Rainville, and J. Thomson, "Direct observations of the role of lateral advection of sea ice meltwater in the onset of autumn freeze up," J. Geophys. Res., 127, doi:10.1029/2021JC017775, 2022.

More Info

1 Feb 2022

In seasonally ice-free parts of the Arctic Ocean, autumn is characterized by heat loss from the upper ocean to the atmosphere and the onset of freeze up, in which first year sea ice begins to grow in open water areas. The timing of freeze up can be highly spatially variable, complicating efforts to provide accurate sea ice forecasting for marine operations. While melt season anomalies can be used to predict freeze up anomalies in some parts of the Arctic, this one-dimensional view merits further examination in light of recent work demonstrating the importance of three-dimensional flows in setting mixed layer properties in marginal ice zones. In this study, we show that horizontal advection of sea ice meltwater hastens freeze up in areas distant from the ice edge. We use nearly 800 temperature and salinity profiles along with satellite imagery collected in the central Beaufort Sea in autumn 2018 to document the roughly 100 km advection of a cold and fresh surface meltwater layer over several weeks. After the meltwater arrived, the mixed layer was cooler and shallower than the mixed layer in adjacent areas unaffected by the meltwater. The cooler and shallower meltwater-influenced mixed layer promoted earlier ice formation. Within the meltwater-affected area, advection was nearly as important as heat loss to the atmosphere for seasonally integrated mixed layer heat loss.

Northern Ocean Rapid Surface Evolution (NORSE): Science and Experiment Plan

Ballard, M., and 35 others including L. Rainville, L. Johnson, C. Lee, J. Shapiro, J. Thomson, and K. Zeiden, "Northern Ocean Rapid Surface Evolution (NORSE): Science and Experiment Plan," Technical Report, APL-UW TR 2102. Applied Physics Laboratory, University of Washington, January 2022, 40 pp.

More Info

13 Jan 2022

The NORSE DRI focuses on characterizing the key physical parameters and processes that govern the predictability of upper-ocean rapid evolution events occurring in the ice-free high latitudes. The goal is to identify which observable parameters are most influential in improving model predictability through inclusion by assimilation, and to field an autonomous observing network that optimizes sampling of high-priority fields. The overall goal is to demonstrate improvements in the predictability of the upper ocean physical fields associated with acoustic propagation over the course of the study. This Science Plan describes the specific objectives and implementation plan.

More Publications

In The News

U.S. icebreaker gap with Russia a growing concern as Arctic 'cold war' heats up

Washington Times, Mike Glenn

Warming trends have spurred a chase for trade routes, natural resources at top of the world. Vessels like the Healy and the Polar Star are the most effective tools for maintaining access to the icy regions for scientific, economic and security purposes, advocates say.

23 Sep 2021

Spiraling Crisis: The Alarming Convergence of Climate Change and Pandemics

ThinkTech Hawaii

In this video documentary available on YouTube, Jim Thomson is interviewed to share the impacts of the pandemic on his research into coastal ocean dynamics in the Arctic.

16 Aug 2021

Using advanced acoustic technology to understand wave conditions and climate change in the Arctic

Environment Coastal & Offshore, Torbjørn Goa

Thomson’s research in the Arctic has paired Nortek Signature500 acoustic Doppler current profilers (ADCPs) mounted on fixed moorings with drifters equipped with Signature1000 ADCPs to get a complete picture of the Arctic’s changing wave conditions.

29 Mar 2021

More News Items

Inventions

SWIFT v4

Record of Invention Number: 48200

Jim Thomson, Alex de Klerk, Joe Talbert

Disclosure

6 Nov 2017

SWIFT: Surface Wave Instrument Float with Tracking

Record of Invention Number: 46566

Jim Thomson, Alex De Klerk, Joe Talbert

Disclosure

24 Jun 2013

Heave Place Mooring for Wave Energy Conversion (WEC) via Tension Changes

Record of Invention Number: 46558

Jim Thomson, Alex De Klerk, Joe Talbert

Disclosure

19 Jun 2013

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close