Campus Map

Jim Thomson

Senior Principal Oceanographer

Professor, Civil and Environmental Engineering





Research Interests

Environmental Fluid Mechanics, Ocean Surface Waves, Marine Renewable Energy (tidal and wave), Coastal and Nearshore Processes, Ocean Instrumentation


Dr. Thomson studies waves, currents, and turbulence by combining field observations and remote sensing techniques


B.A. Physics, Middlebury College, 2000

Ph.D. Physical Oceanography, MIT/WHOI, 2006


Hurricane Coastal Impacts

APL-UW scientists are collaborating with 10 research teams to tackle the National Oceanographic Partnership Program (NOPP) project goals: to enable better understanding and predictive ability of hurricane impacts, to serve and protect coastal communities. The APL-UW team will contribute air-deployed buoys to provide real time observations of hurricane waves and wave forcing that can be ingested by modeling groups, improving forecasts and validating hindcasts.

14 Dec 2021

Wave Glider Observations in the Southern Ocean

A Wave Glider autonomous surface vehicle will conduct a summer-season experiment to investigate ocean–shelf exchange on the West Antarctic Peninsula and frontal air–sea interaction over both the continental shelf and open ocean.

More Info

4 Sep 2019

Southern Ocean climate change is at the heart of the ocean's response to anthropogenic forcing. Variations in South Polar atmospheric circulation patterns, fluctuations in the strength and position of the Antarctic Circumpolar Current, and the intertwining intermediate deep water cells of the oceanic meridional overturning circulation have important impacts on the rate of ocean carbon sequestration, biological productivity, and the transport of heat to the melting continental ice shelves.

Wave Measurements at Ocean Weather Station PAPA

As part of a larger project to understand the impact of surface waves on the ocean mixed layer, APL-UW is measuring waves at Ocean Weather Station Papa, a long-term observational site at N 50°, W 145°.

29 Aug 2019

More Projects


microSWIFTs: Tiny Oceanographic Floats Measure Extreme Coastal Conditions

These small, inexpensive ocean drifters are the latest generation of the Surface Wave Instrument Float with Tracking (SWIFT) platform developed at APL-UW. They are being used in several collaborative research experiments to increase the density of nearshore wave observations.

19 Apr 2022

Using a Wave Energy Converter for UUV Recharge

This project demonstrates the interface required to operate, dock, and wirelessly charge an uncrewed underwater vehicle with a wave energy converter.

More Info

11 Apr 2022

Uncrewed underwater vehicles (UUVs) predominantly use onboard batteries for energy, limiting mission duration based on the amount of stored energy that can be carried by the vehicle. Vehicle recharge requires recovery using costly, human-supported vessel operations. The ocean is full of untapped energy in the form of waves that, when converted to electrical energy by a wave energy converter (WEC), can be used locally to recharge UUVs without human intervention. In this project we designed and developed a coupled WEC-UUV system, with emphasis on the systems developed to interface the UUV to the WEC.

Mapping Underwater Turbulence with Sound

More Info

9 Apr 2018

To dock at a terminal, large Washington State ferries use their powerful engines to brake, generating a lot of turbulence. Doppler sonar instruments are capturing an accurate picture of the turbulence field during docking procedures and how it affects terminal structures and the seabed. This research is a collaborative effort between APL-UW and the UW College of Engineering, Department of Civil and Environmental Engineering.

More Videos


2000-present and while at APL-UW

Wave Exposure on the Northern Coast of Alaska Using the SWAN Model with a Sea Ice Parameterization

Hošeková, L., W.E. Rogers, and J. Thomson, "Wave Exposure on the Northern Coast of Alaska Using the SWAN Model with a Sea Ice Parameterization," Technical Report, APL-UW TR 2302, Applied Physics Laboratory, University of Washington, Seattle, May 2023, 24 pp.

More Info

8 May 2023

The presence of sea ice along Arctic coastlines controls the exposure of the coast to wave action. We present a case study from the summer of 2014 to demonstrate the recent addition of ice attenuation in the SWAN (Simulating WAves Nearshore) numerical wave model. Observations from several freely drifting SWIFT (Surface Wave Instrument Float with Tracking) buoys show reduced wave action resulting from remnant sea ice along the coast in early summer. This is well-described by the new model that includes sea ice attenuation, relative to a previous version of the wave model without a sea ice parameterization. The model is sensitive to the sea ice product used for model initialization because some sea ice products do not resolve coastal ice. The difference in the cumulative wave exposure at the coast shows that sea ice attenuation in early summer is a significant seasonal effect.

Wind-driven motions of the ocean surface mixed layer in the Western Arctic

Brenner, S., J. Thomson, L. Rainville, L. Crews, and C. Lee, "Wind-driven motions of the ocean surface mixed layer in the Western Arctic," J. Phys. Oceanogr., EOR, doi:10.1175/JPO-D-22-0112.1, 2023.

More Info

12 Apr 2023

Observations of sea ice and the upper ocean from three moorings in the Beaufort Sea quantify atmosphere-ice-ocean momentum transfer, with a particular focus on the inertial-frequency response. Seasonal variations in the strength of mixed layer (ML) inertial oscillations suggest that sea ice damps momentum transfer from the wind to the ocean, such that the oscillation strength is minimal under sea ice cover. In contrast, the net Ekman transport is unimpacted by the presence of sea ice. The mooring measurements are interpreted with a simplified one-dimensional ice-ocean coupled "slab" model. The model results provide insight into the drivers of the inertial seasonality: namely, that a combination of both sea ice internal stress and ocean ML depth contribute to the seasonal variability of inertial surface currents and inertial sea ice drift, while under-ice roughness does not. Furthermore, the importance of internal stress in damping inertial oscillations is different at each moorings, with a minimal influence at the southernmost mooring (within the seasonal ice zone) and more influence at the northernmost mooring. As the Arctic shifts to a more seasonal sea ice regime, changes in sea ice cover and sea ice internal strength may impact inertial-band ice-ocean coupling and allow for an increase in wind forcing to the ocean.

Observations of river plume mixing in the surf zone

Kastner, S.E., A.R. Horner-Devine, J.M. Thomson, and S.N. Giddings, "Observations of river plume mixing in the surf zone," J. Phys. Oceanogr., 53, doi:10.1175/JPO-D-21-0286.1, 2023.

More Info

1 Mar 2023

We use salinity observations from drifters and moorings at the Quinault River mouth to investigate mixing and stratification in a surf-zone trapped river plume. We quantify mixing based on the rate of change of salinity, DS/Dt, in the drifters' quasi-Lagrangian reference frame. We estimate a constant value of the vertical eddy diffusivity of salt of Kz = 2.2±0.6×10-3 m2 s-1, based on the relationship between vertically integrated DS/Dt and stratification, with values as high as 1x10-2m2 s-1 when stratification is low. Mixing, quantified as DS/Dt, is directly correlated to surf-zone stratification, and is therefore modulated by changes in stratification caused by tidal variability in freshwater volume flux. High DS/Dt is observed when the near-surface stratification is high and salinity gradients are collocated with wave-breaking turbulence. We observe a transition from low stratification and low DS/Dt at low tidal stage to high stratification and high DS/Dt at high tidal stage. Observed wave-breaking turbulence does not change significantly with stratification, tidal stage or offshore wave height; as a result we observe no relationship between plume mixing and offshore wave height for the range of conditions sampled. Thus, plume mixing in the surf zone is altered by changes in stratification; these are due to tidal variability in freshwater flux from the river and not wave conditions, presumably because depth-limited wave breaking causes sufficient turbulence for mixing to occur during all observed conditions.

More Publications

In The News

UW-developed wave sensors deployed to improve hurricane forecasts

UW News

Jacob Davis, a UW doctoral student in civil and environmental engineering, and members of the U.S. Navy’s VXS-1 Squadron deployed wave sensing buoys in the path of Hurricane Ian, before the hurricane made landfall.

28 Sep 2022

See delicate rib vortices encircle breaking ocean waves

Scientific American, Joanna Thompson

These little-studied mini twisters form beautiful loops under the water’s surface. Until the past decade or so few people in the scientific community paid much attention to rib vortices, partly because they are difficult to photograph. The ephemeral twists require a high-resolution camera and precise timing to capture.

1 Aug 2022

U.S. icebreaker gap with Russia a growing concern as Arctic 'cold war' heats up

Washington Times, Mike Glenn

Warming trends have spurred a chase for trade routes, natural resources at top of the world. Vessels like the Healy and the Polar Star are the most effective tools for maintaining access to the icy regions for scientific, economic and security purposes, advocates say.

23 Sep 2021

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center