Campus Map

Zoltan Szuts

Senior Oceanographer





Department Affiliation

Ocean Physics


B.A. Biology, Oberlin College, 2001

M.S. Oceanography, University of Washington, 2004

Ph.D. Oceanography, University of Washington, 2008


2000-present and while at APL-UW

The scientific and societal uses of global measurements of subsurface velocity

Szuts, Z.B., and 12 others including J.B. Girton, "The scientific and societal uses of global measurements of subsurface velocity," Front. Mar. Sci., 6, 358, doi:10.3389/fmars.2019.00358, 2019.

More Info

24 Jul 2019

Ocean velocity defines ocean circulation, yet the available observations of subsurface velocity are under-utilized by society. The first step to address these concerns is to improve visibility of and access to existing measurements, which include acoustic sampling from ships, subsurface float drifts, and measurements from autonomous vehicles. While multiple programs provide data publicly, the present difficulty in finding, understanding, and using these data hinder broader use by managers, the public, and other scientists. Creating links from centralized national archives to project specific websites is an easy but important way to improve data discoverability and access. A further step is to archive data in centralized databases, which increases usage by providing a common framework for disparate measurements. This requires consistent data standards and processing protocols for all types of velocity measurements. Central dissemination will also simplify the creation of derived products tailored to end user goals. Eventually, this common framework will aid managers and scientists in identifying regions that need more sampling and in identifying methods to fulfill those demands. Existing technologies are capable of improving spatial and temporal sampling, such as using ships of opportunity or from autonomous platforms like gliders, profiling floats, or Lagrangian floats. Future technological advances are needed to fill sampling gaps and increase data coverage.

Florida Current salinity and salinity transport: Mean and decadal changes

Szuts, Z.B., and C.S. Meinen, "Florida Current salinity and salinity transport: Mean and decadal changes," Geophys. Res. Lett., 44, 10,495-10,503, doi:10.1002/2017GL074538, 2017.

More Info

28 Oct 2017

The Florida Current (FC) contributes to Atlantic circulation by carrying the western boundary flow of the subtropical gyre and the upper branch of meridional overturning circulation. Repeated FC hydrographic (velocity, salinity, and temperature) sections during 1982–1987 and 2001–2015 characterize its water mass structure and associated transport variability. On average, FC volume transport comes from subtropical North Atlantic water (NAW, 44%), Antarctic Intermediate Water (AAIW, 14%), surface water (SW, 27%), and an indistinct source (Rem 15%), while salinity transport relative to the average salinity along 26°N comes from NAW (55%), AAIW (0.2%), SW (30%), and Rem (15%). From 1982–1987 to 2001–2015, NAW, AAIW, and Rem salinified by 0.03–0.16 g kg-1 and increased the salinity anomaly transport by 3%. These patterns imply that advective salt transport by the FC (1) is sensitive to subtropical North Atlantic variability and (2) is partially decoupled from the volumetric pathway of the upper overturning branch.

Continuous estimate of Atlantic oceanic freshwater flux at 26.5°N

McDonagh, E.L., B.A. King, H.L. Bryden, P. Courtois, Z. Szuts, M. Baringer, S.A. Cunningham, C. Atkinson, and G. McCarthy, "Continuous estimate of Atlantic oceanic freshwater flux at 26.5°N," J. Clim., 28, 8888-8906, doi:10.1175/JCLI-D-14-00519.1, 2015.

More Info

15 Nov 2015

The first continuous estimates of freshwater flux across 26.5°N are calculated using observations from the RAPID–MOCHA–Western Boundary Time Series (WBTS) and Argo floats every 10 days between April 2004 and October 2012. The mean plus or minus the standard deviation of the freshwater flux (FW) is –1.17 ± 0.20 Sv (1 Sv ≡ 106 m3 s-1; negative flux is southward), implying a freshwater divergence of –0.37 ± 0.20 Sv between the Bering Strait and 26.5°N. This is in the sense of an input of 0.37 Sv of freshwater into the ocean, consistent with a region where precipitation dominates over evaporation. The sign and the variability of the freshwater divergence are dominated by the overturning component (–0.78 ± 0.21 Sv). The horizontal component of the freshwater divergence is smaller, associated with little variability and positive (0.35 ± 0.04 Sv). A linear relationship, describing 91% of the variance, exists between the strength of the meridional overturning circulation (MOC) and the freshwater flux (–0.37 – 0.047 Sv of FW per Sverdrups of MOC). The time series of the residual to this relationship shows a small (0.02 Sv in 8.5 yr) but detectable decrease in the freshwater flux (i.e., an increase in the southward freshwater flux) for a given MOC strength. Historical analyses of observations at 24.5°N are consistent with a more negative freshwater divergence from –0.03 to –0.37 Sv since 1974. This change is associated with an increased southward freshwater flux at this latitude due to an increase in the Florida Straits salinity (and therefore the northward salinity flux).

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center