APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Matthew Bruce

Principal Scientist/Engineer

Email

mbruce@apl.washington.edu

Phone

206-685-2283

Education

B.S. Electrical and Computer Engineering, Michigan Technological University, 1991

M.S. Electrical and Computer Engineering, Virginia Polytechnic University, 1993

Ph.D. Bioengineering, University of Washington, 2004

Matthew Bruce's Website

http://staff.washington.edu/mbruce

Publications

2000-present and while at APL-UW

Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans

Khaing, Z.Z., and 9 others including M. Bruce, "Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans," Sci. Transl. Med., 16, doi:10.1126/scitranslmed.adn4970, 2024.

More Info

18 Sep 2024

Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.

Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging

Harmon, J.N. J.E. Hyde, D.E. Jensen, E.C. D'cessare, A.A. Odarenko, M.F. Bruce, and Z.Z. Khaing, "Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging," Exper. Neurol., 374, doi:10.1016/j.expneurol.2024.114681, 2024.

More Info

1 Apr 2024

Spinal cord injury is characterized by hemodynamic disruption at the injury epicenter and hypoperfusion in the penumbra, resulting in progressive ischemia and cell death. This degenerative secondary injury process has been well-described, though mostly using ex vivo or depth-limited optical imaging techniques. Intravital contrast-enhanced ultrasound enables longitudinal, quantitative evaluation of anatomical and hemodynamic changes in vivo through the entire spinal parenchyma. Here, we used ultrasound imaging to visualize and quantify subacute injury expansion (through 72 h post-injury) in a rodent cervical contusion model. Significant intraparenchymal hematoma expansion was observed through 72 h post-injury (1.86 ± 0.17-fold change from acute, p < 0.05), while the volume of the ischemic deficit largely increased within 24 h post-injury (2.24 ± 0.27-fold, p < 0.05). Histology corroborated these findings; increased apoptosis, tissue and vessel loss, and sustained tissue hypoxia were observed at 72 h post-injury. Vascular resistance was significantly elevated in the remaining perfused tissue, likely due in part to deformation of the central sulcal artery nearest to the lesion site. In conjunction, substantial hyperemia was observed in all perilesional areas examined except the ipsilesional gray matter. This study demonstrates the utility of longitudinal ultrasound imaging as a quantitative tool for tracking injury progression in vivo.

Comparative study of histotripsy pulse parameters used to inactivate Escherichia coli in suspension

Ambedkar, P.A., Y.-N. Wang, T. Khokhlova, M. Bruce, D.F. Leotta, S. Totten, A.D. Maxwell, K.T. Chan, W.C. Liles, E.P. Dellinger, W. Monsky, A.A. Adedipe, and T.J. Matula, "Comparative study of histotripsy pulse parameters used to inactivate Escherichia coli in suspension," Ultrasound Med. Biol., 49, 2451-2458, doi:10.1016/j.ultrasmedbio.2023.08.004, 2023.

More Info

1 Dec 2023

Bacterial loads can be effectively reduced using cavitation-mediated focused ultrasound, or histotripsy. In this study, gram-negative bacteria (Escherichia coli) in suspension were used as model bacteria to evaluate the effectiveness of two regimens of histotripsy treatments: cavitation histotripsy (CH) and boiling histotripsy (BH).

The results of this study suggest that both CH and BH can be used to inactivate E. coli in suspension, with the optimal regimen depending on the attainable peak negative focal pressure at the target.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close