Campus Map

Peter Gaube

Principal Oceanographer






B.A. Ecology and Evolutionary Biology, University of Arizona, 2003

M.S. Physical Oceanography, Nova Southeastern University, 2007

Ph.D. Oceanography, Oregon State University, 2012

Peter Gaube's Website



2000-present and while at APL-UW

Diverse variability of surface chlorophyll during the evolution of Gulf Stream rings

Ning, J., K. Chen, and P. Gaube, "Diverse variability of surface chlorophyll during the evolution of Gulf Stream rings," Geophys. Res. Lett., EOR, doi:10.1029/2020GL091461, 2021.

More Info

16 Feb 2021

We investigate how the near‐surface chlorophyll‐a (CHL) evolves in Gulf Stream (GS) warm‐core rings (WCRs) and cold‐core rings (CCRs) using multi‐platform satellite observations. Averaged CHL anomaly (CHLA) within the rings exhibits both positive and negative linear trends during the evolution of the WCRs while negative trends dominate in CCRs. This difference is associated with a variety of physical processes occurring during the evolution process. Meanwhile, eddy‐centric analysis reveals four spatial patterns of CHLA long‐term trends, some of which highlights the importance of rings in shaping surface CHL. Short‐term fluctuations of CHLA in WCRs and CCRs are closely correlated with mixed layer depth (MLD) and sea surface temperature anomaly (SSTA) and highlight the complex interplay between multiple mechanisms. In addition, we find higher concentration CHL in some WCRs than that in CCRs during the same season, providing an alternative view of the characteristics of the surface ecosystem in Gulf Stream rings.

Lagrangian reconstruction to extract small-scale salinity variability from SMAP observations

Barceló-Llull, B., K. Drushka, and P. Gaube, "Lagrangian reconstruction to extract small-scale salinity variability from SMAP observations," J. Geophys. Res., EOR, doi:10.1029/2020JC016477, 2021.

More Info

26 Jan 2021

As the resolution of observations and models improves, emerging evidence indicates that ocean variability on 1–200 km scales is of fundamental importance to ocean circulation, air‐sea interaction, and biogeochemistry. In many regions, salinity variability dominates over thermal effects in forming density fronts. Unfortunately, current satellite observations of sea surface salinity (SSS) only resolve scales ࣙ40 km (or larger, depending on the product). In this study we investigate small‐scale variability (ࣘ25 km) by reconstructing gridded SSS observations made by the Soil Moisture Active Passive (SMAP) satellite in the northwest Atlantic Ocean. Using altimetric geostrophic currents, we numerically advect SMAP SSS fields to produce a Lagrangian reconstruction that represents small scales. Reconstructed fields are compared to in situ salinity observations made by a ship‐board thermosalinograph, revealing a marked improvement in small‐scale salinity variability when compared to the original SMAP fields, particularly from the continental shelf to the Gulf Stream. In the Sargasso Sea, however, both SMAP and the reconstructed fields contain higher variability than is observed in situ. Enhanced small‐scale salinity variability is concentrated in two bands: a northern band aligned with the continental shelfbreak, and a southern band aligned with the Gulf Stream mean position. Seasonal differences in the small‐scale variability appear to covary with the seasonal cycle of the large‐scale SSS gradients resulting from the freshening of the coastal waters during periods of elevated river outflow.

Vertical movements of a pelagic thresher shark (Alopias pelagicus): insights into the species' physiological limitations and trophic ecology in the Red Sea

Arostegui, M.C., P. Gaube, M.L. Berumen, A. DiGiulian, B.H. Jones, A. Røstad, and C.D. Braun, "Vertical movements of a pelagic thresher shark (Alopias pelagicus): insights into the species' physiological limitations and trophic ecology in the Red Sea," Endanger. Species Res., 43, 387-394, doi:10.3354/esr01079, 2020.

More Info

3 Dec 2020

The pelagic thresher shark Alopias pelagicus is an understudied elasmobranch harvested in commercial fisheries of the tropical Indo-Pacific. The species is endangered, overexploited throughout much of its range, and has a decreasing population trend. Relatively little is known about its movement ecology, precluding an informed recovery strategy. Here, we report the first results from an individual pelagic thresher shark outfitted with a pop-up satellite archival transmitting (PSAT) tag to assess its movement with respect to the species' physiology and trophic ecology. A 19 d deployment in the Red Sea revealed that the shark conducted normal diel vertical migration, spending the majority of the day at 200-300 m in the mesopelagic zone and the majority of the night at 50–150 m in the epipelagic zone, with the extent of these movements seemingly not constrained by temperature. In contrast, the depth distribution of the shark relative to the vertical distribution of oxygen suggested that it was avoiding hypoxic conditions below 300 m even though that is where the daytime peak of acoustic backscattering occurs in the Red Sea. Telemetry data also indicated crepuscular and daytime overlap of the shark’s vertical habitat use with distinct scattering layers of small mesopelagic fishes and nighttime overlap with nearly all mesopelagic organisms in the Red Sea as these similarly undergo nightly ascents into epipelagic waters. We identify potential depths and diel periods in which pelagic thresher sharks may be most susceptible to fishery interactions, but more expansive research efforts are needed to inform effective management.

More Publications

In The News

Billfish expedition to the Red Sea

Sport Fishing, Martin Arostegui

This was not a vacation trip but rather a research fishing expedition with the express goal of outfitting swordfish and other large pelagic fish in the Red Sea with satellite tags to study their movement behavior.

4 Feb 2020

South Florida fishermen part of ambitious and revolutionary tagging program for swordfish

Miami Herald, Steve Waters

South Florida fishermen are helping fisheries scientists to better understand swordfish as well as uncharted ocean depths through an ambitious, revolutionary satellite tagging program. The tags will enable University of Washington scientists Peter Gaube and Camrin Braun to learn new information about swordfish, which spend most of their lives in what the researchers call the ocean twilight zone.

27 Dec 2019

Swordfish as oceanographers? Satellite tags allow research of ocean's 'twilight zone' off Florida

UW News, Hannah Hickey

Researchers from the University of Washington are using high-tech tags to record the movements of swordfish – big, deep-water, migratory, open-ocean fish that are poorly studied – and get a window into the ocean depths they inhabit.

4 Nov 2019

More News Items


Continuous Underway Multi-sensor Profiler

Record of Invention Number: 48207

Peter Gaube, Kyla Drushka


15 Nov 2017

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center