Campus Map

Justin Burnett

Mechanical Engineer





Department Affiliation

Ocean Engineering


B.S. Mechanical Engineering, Gonzaga University, 2010

M.S. Mechanical Engineering, University of Nebraska, 2015


2000-present and while at APL-UW

Microbial transport by a descending ice melting probe: Implications for subglacial and ocean world exploration

Schuler, C.G., D.P. Winebrenner, W.T. Elam, J. Burnett, B.W. Boles, and J.A. Mikucki, "Microbial transport by a descending ice melting probe: Implications for subglacial and ocean world exploration," Astrobiology, EOR, doi:10.1089/ast.2021.0106, 2023.

More Info

6 Jun 2023

Ocean Worlds beneath thick ice covers in our solar system, as well as subglacial lakes on Earth, may harbor biological systems. In both cases, thick ice covers (>100 s of meters) present significant barriers to access. Melt probes are emerging as tools for reaching and sampling these realms due to their small logistical footprint, ability to transport payloads, and ease of cleaning in the field. On Earth, glaciers are immured with various abundances of microorganisms and debris. The potential for bioloads to accumulate around and be dragged by a probe during descent has not previously been investigated. Due to the pristine nature of these environments, minimizing and understanding the risk of forward contamination and considering the potential of melt probes to act as instrument-induced special regions are essential. In this study, we examined the effect that two engineering descent strategies for melt probes have on the dragging of bioloads. We also tested the ability of a field cleaning protocol to rid a common contaminant, Bacillus. These tests were conducted in a synthetic ice block immured with bioloads using the Ice Diver melt probe. Our data suggest minimal dragging of bioloads by melt probes, but conclude that modifications for further minimization and use in special regions should be made.

Subsurface science and search for life in ocean worlds

Lawrence, J.D., and 20 other including J.L. Burnett, "Subsurface science and search for life in ocean worlds," Planet. Sci. J., 4, doi:10.3847/PSJ/aca6ed, 2023.

More Info

3 Feb 2023

Several worlds in our solar system are thought to hold oceans of liquid water beneath their frozen surfaces. These subsurface ice and ocean environments are promising targets in the search for life beyond Earth, but they also present significant new technical challenges to planetary exploration. With a focus on Jupiter's moon Europa, here we (1) identify major benefits and challenges to subsurface ocean world science, (2) provide a multidisciplinary survey of relevant sample handling and life detection technologies, and (3) integrate those perspectives into the Subsurface Science and Search for Life in Ocean Worlds (SSSLOW) concept payload. We discuss scientific goals across three complementary categories: (1) search for life, (2) assess habitability, and (3) investigate geological processes. Major mission challenges considered include submerged operation in high-pressure environments, the need to sample fluids with a range of possible chemical conditions, and detection of biosignatures at low concentrations. The SSSLOW addresses these issues by tightly integrated instrumentation and sample handling systems to enable sequential, complementary measurements while prioritizing preservation of sample context. In this work, we leverage techniques and technologies across several fields to demonstrate a path toward future subsurface exploration and life detection in ice and ocean worlds.

Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

Davis, C.L., and the SALSA Science Team, including J. Burnett, "Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica," ISME Commun., 3, doi:10.1038/s43705-023-00216-w, 2023.

More Info

30 Jan 2023

Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ13C values for EPS (–25 to –30%) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center