APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Luc Rainville

Principal Oceanographer

Affiliate Assistant Professor, Oceanography

Email

rainville@apl.washington.edu

Phone

206-685-4058

Biosketch

Dr. Rainville's research interests reside primarily in observational physical oceanography and span the wide range of spatial and temporal scales in the ocean. From large-scale circulation to internal waves to turbulence, the projects he is involved in focus on the interactions between phenomena of different scales. He is motivated to find simple and innovative ways to study the ocean, primarily through sea-going oceanography but also using with remote sensing and modeling.

In particular, Luc Rainville is interested in how phenomena typically considered 'small-scale' impact the oceanic system as a whole.

* Propagation of internal waves through eddies and fronts.
* Water mass formation and transformation by episodic forcing events.
* Mixing and internal waves in the Arctic and in the Southern Ocean.


Dr. Rainville joined the Ocean Physics Department at APL-UW at the end of 2007.

Department Affiliation

Ocean Physics

Education

B.Sc. Physics, McGill University, 1998

Ph.D. Oceanography, Scripps Institution of Oceanography, 2004

Projects

Stratified Ocean Dynamics of the Arctic — SODA

Vertical and lateral water properties and density structure with the Arctic Ocean are intimately related to the ocean circulation, and have profound consequences for sea ice growth and retreat as well as for prpagation of acoustic energy at all scales. Our current understanding of the dynamics governing arctic upper ocean stratification and circulation derives largely from a period when extensive ice cover modulated the oceanic response to atmospheric forcing. Recently, however, there has been significant arctic warming, accompanied by changes in the extent, thickness distribution, and properties of the arctic sea ice cover. The need to understand these changes and their impact on arctic stratification and circulation, sea ice evolution, and the acoustic environment motivate this initiative.

31 Oct 2016

The Submesoscale Cascade in the South China Sea

This research program is investigating the evolution of submesoscale eddies and filaments in the Kuroshio-influenced region off the southwest coast of Taiwan.

More Info

26 Aug 2015

Science questions:
1. What role does the Kuroshio play in generating mesoscale and submesoscale variability modeled/observed off the SW coast of Taiwan?
2. How does this vary with atmospheric forcing?
3. How do these features evolve in response to wintertime (strong) atmospheric forcing?
4. What role do these dynamics play in driving water mass evolution and interior stratification in the South China Sea?
5. What role do these dynamics/features have on the transition of water masses from northern SCS water into the Kuroshio branch water/current and local flow patterns?

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

More Projects

Publications

2000-present and while at APL-UW

Acoustic sensing of ocean mixed layer depth and temperature from uplooking ADCPs

Brenner, S., J. Thomson, L. Rainville, D. Torres, M. Doble, J. Wilkinson, and C. Lee, "Acoustic sensing of ocean mixed layer depth and temperature from uplooking ADCPs," J. Atmos. Ocean. Technol., EOR, doi:10.1175/JTECH-D-22-0055.1, 2022.

More Info

7 Nov 2022

Properties of the surface mixed layer (ML) are critical for understanding and predicting atmosphere-sea ice-ocean interactions in the changing Arctic Ocean. Mooring measurements are typically unable to resolve the ML in the Arctic due to the need for instruments to remain below the surface to avoid contact with sea ice and icebergs. Here, we use measurements from a series of three moorings installed for one year in the Beaufort Sea to demonstrate that upward looking Acoustic Doppler Current Profilers (ADCPs) installed on subsurface floats can be used to estimate ML properties. A method is developed for combining measured peaks in acoustic backscatter and inertial shear from the ADCPs to estimate the ML depth. Additionally, we use an inverse sound speed model to infer the summer ML temperature based on offsets in ADCP altimeter distance during open water periods. The ADCP estimates of ML depth and ML temperature compare favourably with measurements made from mooring temperature sensors, satellite SST, and from an autonomous Seaglider. These methods could be applied to other extant mooring records to recover additional information about ML property changes and variability.

Island Arc Turbulent Eddy Regional Exchange (ARCTERX): Science and Experiment Plan

The ARCTERX Team, "Island Arc Turbulent Eddy Regional Exchange (ARCTERX): Science and Experiment Plan," Technical Report, APL-UW TR 2201. Applied Physics Laboratory, University of Washington, July 2022, 49 pp.

More Info

15 Jul 2022

Submesoscale flows such as fronts, eddies, filaments, and instabilities with lateral dimensions between 100 m and 10 km are ubiquitous features of the ocean. They act as an intermediary between the mesoscale and small-scale turbulence and are thought to have a critical role in closing the ocean's kinetic budget by facilitating a forward energy cascade, where energy is transferred to small scales and dissipated.

The initiative uses a suite of measurements from autonomous platforms and ships combined with regional simulations to characterize the submesoscale flows in the western Pacific Ocean between Luzon and Mariana Island arcs &$151; the ARCTERX region.

Program goals are to characterize the strength and spectral properties of the turbulent cascade of kinetic energy on the submesoscales in the ARCTERX study region and understand the processes that control energy transfers across scales and their seasonal variability.

Water mass exchange between the Bay of Bengal and Arabian Sea from multi-year sampling with autonomous gliders

Rainville, L., C.M. Lee, K. Arulananthan, S.U.P. Jinadasa, H.J.S. Fernando, W.N.C. Priyadarshani, and H. Wijesekera, "Water mass exchange between the Bay of Bengal and Arabian Sea from multi-year sampling with autonomous gliders," J. Phys. Oceanogr., 52, 2377-2396, doi:10.1175/JPO-D-21-0279.1, 2022.

More Info

20 Jun 2022

We present high-resolution sustained, persistent observations of the ocean around Sri Lanka from autonomous gliders collected over several years, a region with complex, variable circulation patterns connecting the Bay of Bengal and the Arabian Sea to each other and the rest of the Indian Ocean. The Seaglider surveys resolve seasonal to interannual variability in vertical and horizontal structure, allowing quantification of volume, heat and freshwater fluxes, as well as the transformations and transports of key water mass classes across sections normal to the east (2014–2015) and south (2016–-2019) coasts of Sri Lanka. The resulting transports point to the importance of both surface and subsurface flows and show that the direct pathway along the Sri Lankan coast plays a significant role in the exchanges of waters between Arabian Sea and Bay of Bengal. Significant section-to-section variability highlights the need for sustained, long-term observations to quantify the circulation pathways and dynamics associated with exchange between the Bay of Bengal and Arabian Sea and provides context for interpreting observations collected as 'snapshots' of more limited duration.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close