APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Kristin Laidre

Senior Principal Oceanographer

Professor, School of Aquatic + Fishery Sciences

Email

klaidre@uw.edu

Phone

206-616-9030

Department Affiliation

Polar Science Center

Education

B.S. Zoology, University of Washington - Seattle, 1999

Ph.D. Aquatic & Fishery Sciences, University of Washington - Seattle, 2003

Kristin Laidre's Website

http://staff.washington.edu/klaidre

Publications

2000-present and while at APL-UW

Consistent seasonal hydrography from moorings at northwest Greenland glacier fronts

Zahn, M.J., K.L. Laidre, M. Simon, K.M. Stafford, M. Wood, J.K. Willis, E.M. Phillips, and I. Fenty, "Consistent seasonal hydrography from moorings at northwest Greenland glacier fronts," J. Geophys. Res., 129, doi:10.1029/2024JC021046, 2024.

More Info

1 Sep 2024

Greenland's marine-terminating glaciers connect the ice sheet to the ocean and provide a critical boundary where heat, freshwater, and nutrient exchanges take place. Buoyant freshwater runoff from inland ice sheet melt is discharged at the base of marine-terminating glaciers, forming vigorous upwelling plumes. It is understood that subglacial plumes modify waters near glacier fronts and increase submarine glacier melt by entraining warm ambient waters at depth. However, ocean observations along Greenland's coastal margins remain biased toward summer months which limits accurate estimation of ocean forcing on glacier retreat and acceleration. Here, we fill a key observational gap in northwest Greenland by describing seasonal hydrographic variation at glacier fronts in Melville Bay using in situ observations from moorings deployed year-round, CTDs, and profiling floats. We evaluated local and remote forcing using remote sensing and reanalysis data products alongside a high-resolution ocean model. Analysis of the year-round hydrographic data revealed consistent above-sill seasonality in temperature and salinity. The warmest, saltiest waters occurred in spring (April–May) and primed glaciers for enhanced submarine melt in summer when meltwater plumes entrain deep waters. Waters were coldest and freshest in early winter (November–December) after summer melt from sea ice, glacier ice, and icebergs provided cold freshwater along the shelf. Ocean variability was greatest in the summer and fall, coincident with increased freshwater runoff and large wind events before winter sea ice formation. Results increase our mechanistic understanding of Greenland ice-ocean interactions and enable improvements in ocean model parameterization.

Assessing the risk of climate maladaptation for Canadian polar bears

Rivkin, L.R., and 17 others including K.L. Laidre, "Assessing the risk of climate maladaptation for Canadian polar bears," Ecol. Lett., 27, doi:10.1111/ele.14486, 2024.

More Info

1 Aug 2024

The Arctic is warming four times faster than the rest of the world, threatening the persistence of many Arctic species. It is uncertain if Arctic wildlife will have sufficient time to adapt to such rapidly warming environments. We used genetic forecasting to measure the risk of maladaptation to warming temperatures and sea ice loss in polar bears (Ursus maritimus) sampled across the Canadian Arctic. We found evidence for local adaptation to sea ice conditions and temperature. Forecasting of genome-environment mismatches for predicted climate scenarios suggested that polar bears in the Canadian high Arctic had the greatest risk of becoming maladapted to climate warming. While Canadian high Arctic bears may be the most likely to become maladapted, all polar bears face potentially negative outcomes to climate change. Given the importance of the sea ice habitat to polar bears, we expect that maladaptation to future warming is already widespread across Canada.

Nursing behavior of wild polar bears in the Canadian High Arctic

Stirling, I., L.E. Burns, E.V. Regehr, K.L. Laidre, and C. Spencer, "Nursing behavior of wild polar bears in the Canadian High Arctic," Can. J. Zool., 102, 663-672, doi:10.1139/cjz-2024-0001, 2024.

More Info

19 Jul 2024

During 17 spring and summer field seasons between 1973 and 1999, we documented 220 bouts of nursing by dependent polar bear (Ursus maritimus Phipps, 1774) cubs at Radstock Bay, Nunavut, Canada. The overall mean duration of nursing bouts for cubs-of-the-year (COY) and yearlings (YRLG) litters was 7.1 min (standard deviation (SD) = 3.3, range = 1–23). Mean nursing bout durations of one- and two-cub litters of COY and YRLG in spring and summer seasons ranged from 6.09 to 7.78 min and from 5.00 to 9.18 min, respectively. The overall mean duration of inter-nursing intervals for COY and YRLG litters was 5.7 h (SD = 4.9, range = 0.0–35.0). The mean inter-nursing interval for one-cub litters was 6.4 h (SD = 4.6, range = 0.0–20.2) and for two-cub litters was 5.1 h (SD = 5.1, range = 0.0–35.0). We found no evidence for effects of season or cub age class on nursing behavior. We found weak evidence that two-cub litters nurse slightly longer than one-cub litters, potentially reflecting reduced nursing efficiency due to sibling rivalry. There was neither evidence for diel patterns in nursing behavior nor a detectable relationship between the cessation of nursing and the onset of hunting or sleeping by the adult female.

More Publications

In The News

In the gateway to the Arctic, fat, ice and polar bears are crucial. All three are in trouble

Associated Press, Seth Borenstein

Searching for polar bears where the Churchill River dumps into Canada’s massive Hudson Bay, biologist Geoff York scans a region that’s on a low fat, low ice diet because of climate change.

“To live in the Arctic you need to be fat, or live on fat, or both,” said Kristin Laidre.

24 Sep 2024

For threatened polar bears, the climate change diet is a losing proposition

Associated Press, Seth Borenstein

With Arctic sea ice shrinking from climate change, many polar bears have to shift their diets to land during parts of the summer. Commenting on a recent study, Kristin Laidre notes that there is a growing body of evidence that polar bears cannot sustain themselves on land as the climate warms and sea ice habitat is lost.

13 Feb 2024

The Scientists Watching Their Life's Work Disappear

New York Times Magazine, Catrin Enhorn

The seven scientists here document the impacts of global warming on the nonhuman world. Their work brings them face to face with realities that few of us see firsthand. Some are stubborn optimists. Some struggle with despair. To varying degrees, they all take comfort in nature's resilience. But they know it goes only so far. These scientists are witnesses to an intricately connected world that we have pushed out of balance. Their faces show the weight they carry.

26 Oct 2023

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close