APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Anda Vladoiu

Senior Oceanographer

Email

avladoiu@apl.uw.edu

Phone

206-685-9080

Department Affiliation

Ocean Physics

Education

M.S. Oceanography, University of Southampton (Southampton, UK), 2015

Ph.D. Physical Oceanography, University of Sorbonne (Paris, France), 2018

Publications

2000-present and while at APL-UW

The Green Edge cruise: Investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom

Bruyant, F., et al., including A. Vladoiu, "The Green Edge cruise: Investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom," Earth Syst. Sci. Data, 14, 4607-4642, doi:10.5194/essd-14-4607-2022, 2022.

More Info

20 Oct 2022

The Green Edge project was designed to investigate the onset, life, and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in Arctic Ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the Arctic environment will affect it. Green Edge was a large multidisciplinary, collaborative project bringing researchers and technicians from 28 different institutions in seven countries together, aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in Baffin Bay, in the Canadian Arctic. This paper describes the sampling strategy and the dataset obtained from the research cruise, which took place aboard the Canadian Coast Guard ship (CCGS) Amundsen in late spring and early summer 2016. The sampling strategy was designed around the repetitive, perpendicular crossing of the marginal ice zone (MIZ), using not only ship-based station discrete sampling but also high-resolution measurements from autonomous platforms (Gliders, BGC-Argo floats …) and under-way monitoring systems.

Island Arc Turbulent Eddy Regional Exchange (ARCTERX): Science and Experiment Plan

The ARCTERX Team, "Island Arc Turbulent Eddy Regional Exchange (ARCTERX): Science and Experiment Plan," Technical Report, APL-UW TR 2201. Applied Physics Laboratory, University of Washington, July 2022, 49 pp.

More Info

15 Jul 2022

Submesoscale flows such as fronts, eddies, filaments, and instabilities with lateral dimensions between 100 m and 10 km are ubiquitous features of the ocean. They act as an intermediary between the mesoscale and small-scale turbulence and are thought to have a critical role in closing the ocean's kinetic budget by facilitating a forward energy cascade, where energy is transferred to small scales and dissipated.

The initiative uses a suite of measurements from autonomous platforms and ships combined with regional simulations to characterize the submesoscale flows in the western Pacific Ocean between Luzon and Mariana Island arcs &$151; the ARCTERX region.

Program goals are to characterize the strength and spectral properties of the turbulent cascade of kinetic energy on the submesoscales in the ARCTERX study region and understand the processes that control energy transfers across scales and their seasonal variability.

Two-dimensional wavenumber spectra on the horizontal submesoscale and vertical finescale

Vladoiu, A., R.-C. Lien, and E. Kunze, "Two-dimensional wavenumber spectra on the horizontal submesoscale and vertical finescale," J. Phys. Oceanogr., 52, 2008-2027, doi:10.1175/JPO-D-21-0111.1, 2022.

More Info

12 May 2022

Horizontal and vertical wavenumbers (kx, kz) immediately below the Ozmidov wavenumber are spectrally distinct from both isotropic turbulence (kx, kz > 1 cpm) and internal waves as described by the Garrett-and-Munk (GM) model spectrum (kz < 0.1 cpm). Towed CTD chain, augmented with concurrent EM-APEX profiling float microstructure measurements and shipboard ADCP surveys, are used to characterize 2D wavenumber (kx, kz) spectra of isopycnal slope, vertical strain and isopycnal salinity-gradient on horizontal wavelengths of 50 m – 250 km and vertical wavelengths of 2 – 48 m. For kz < 0.1 cpm, 2D spectra of isopycnal slope and vertical strain resemble GM. Integrated over the other wavenumber, the isopycnal slope 1D kx spectrum exhibits a roughly + 1/3 slope for kx > 3 x 10-3 cpm, and the vertical strain 1D kz spectrum a –1 slope for kz > 0.1 cpm, consistent with previous 1D measurements, numerical simulations and anisotropic stratified turbulence theory. Isopycnal salinity-gradient 1D kx spectra have a + 1 slope for kx > 2 x 10-3 cpm, consistent with nonlocal stirring. Turbulent diapycnal diffusivities inferred in the (i) internal-wave subrange using a vertical strain-based finescale parameterization are consistent with those inferred from finescale horizonal wavenumber spectra of (ii) isopycnal slope and (iii) isopycnal salinity-gradients using Batchelor model spectra. This suggests that horizontal submesoscale and vertical finescale subranges participate in bridging the forward cascade between weakly nonlinear internal waves and isotropic turbulence, as hypothesized by anisotropic turbulence theory.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close