APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Oleg Sapozhnikov

Senior Principal Engineer

Email

olegs@apl.washington.edu

Phone

206-543-1385

Education

M.S. Physics, Moscow State University, 1985

Ph.D. Acoustics, Moscow State University, 1988

Videos

Ultrasonic tweezers: Technology to lift and steer solid objects in a living body

In a recent paper, a CIMU team describes successful experiments to manipulate a solid object within a living body with ultrasound beams transmitted through the skin.

More Info

15 Jul 2020

A collaborative, international research teams developed and tuned an ultrasound transducer to create vortex shaped beams that can trap, grab, levitate, and move in three dimensions mm-scale objects. The team is working to apply this technology to their all-in-one kidney stone treatment system that, in clinical trials, uses ultrasound to non-invasively break, erode, and move stones and stone fragments out of the kidney so that they may pass naturally from the body.

Mechanical Tissue Ablation with Focused Ultrasound

An experimental noninvasive surgery method uses nonlinear ultrasound pulses to liquefy tissue at remote target sites within a small focal region without damaging intervening tissues. A multi-institution, international team led by CIMU researchers is applying the method to the focal treatment of prostate tumors.

More Info

19 Mar 2020

Boiling histotripsy utilizes sequences of millisecond-duration HIFU pulses with high-amplitude shocks that form at the focus by nonlinear propagation effects. Due to strong attenuation of the ultrasound energy at the shocks, these nonlinear waves rapidly heat tissue and generate millimeter-sized boiling bubbles at the focus within each pulse. Then the further interaction of subsequent shocks with the vapor cavity causes tissue disintegration into subcellular debris through the acoustic atomization mechanism.

The method was proposed at APL-UW in collaboration with Moscow State University (Russia) and now is being evaluated for various clinical applications. It has particular promise because of its important clinical advantages: the treatment of tissue volumes can be accelerated while sparing adjacent structures and not injuring intervening tissues; it generates precisely controlled mechanical lesions with sharp margins; the method can be implemented in existing clinical systems; and it can be used with real-time ultrasound imaging for targeting, guidance, and evaluation of outcomes. In addition, compared to thermal ablation, BH may lead to faster resorption of the liquefied lesion contents.

Characterizing Medical Ultrasound Sources and Fields

For every medical ultrasound transducer it's important to characterize the field it creates, whether for safety of imaging or efficacy of therapy. CIMU researchers measure a 2D acoustic pressure distribution in the beam emanating from the source transducer and then reconstruct mathematically the exact field on the surface of the transducer and in the entire 3D space.

11 Sep 2017

More Videos

Publications

2000-present and while at APL-UW

Noninvasive acoustic manipulation of objects in a living body

Ghanem, M.A., A.D. Maxwell, Y.-N. Wang, B.W. Cunitz, V.A. Khokhlova, O.A. Sopozhnikov, and M.R. Bailey, "Noninvasive acoustic manipulation of objects in a living body," Proc. Nat. Acad. Sci. USA, 117, 16,848-16,855, doi:10.1073/pnas.2001779117, 2020.

More Info

21 Jul 2020

In certain medical applications, transmitting an ultrasound beam through the skin to manipulate a solid object within the human body would be beneficial. Such applications include, for example, controlling an ingestible camera or expelling a kidney stone. In this paper, ultrasound beams of specific shapes were designed by numerical modeling and produced using a phased array. These beams were shown to levitate and electronically steer solid objects (3-mm-diameter glass spheres), along preprogrammed paths, in a water bath, and in the urinary bladders of live pigs. Deviation from the intended path was on average <10%. No injury was found on the bladder wall or intervening tissue.

Modeling of photoelastic imaging of mechanical stresses in transparent solids mimicking kidney stones

Sapozhnikov, O.A., A.D. Maxwell, and M.R. Bailey, "Modeling of photoelastic imaging of mechanical stresses in transparent solids mimicking kidney stones," J. Acoust. Soc. Am., 147, 3819-3829, doi:10.1121/10.0001386, 2020.

More Info

1 Jun 2020

Theoretical and numerical models were developed to calculate the polariscopic integrated light intensity that forms a projection of the dynamic stress within an axisymmetric elastic object. Although the model is general, this paper addressed its application to measurements of stresses in model kidney stones from a burst wave lithotripter for stone fragmentation. The stress was calculated using linear elastic equations, and the light propagation was modeled in the instantaneous case by integrating over the volume of the stone. The numerical model was written in finite differences. The resulting images agreed well with measured images. The measured images corresponded to the maximum shear stress distribution, although other stresses were also plotted. Comparison of the modeled and observed polariscope images enabled refinement of the photoelastic constant by minimizing the error between the calculated and measured fields. These results enable quantification of the stress within the polariscope images, determination of material properties, and the modes and mechanisms of stress production within a kidney stone. Such a model may help in interpreting elastic waves in structures, such as stones, toward improving lithotripsy procedures.

An investigation of elastic waves producing stone fracture in burst wave lithotripsy

Maxwell, A.D., B. MacConaghy, M.R. Bailey, and O.A. Sapozhnikov, "An investigation of elastic waves producing stone fracture in burst wave lithotripsy," J. Acoust. Soc. Am., 147, 1607-1622, doi:10.1121/10.0000847, 2020.

More Info

1 Mar 2020

Burst wave lithotripsy is a method to noninvasively fragment urinary stones by short pulses of focused ultrasound. In this study, physical mechanisms of stone fracture during burst wave lithotripsy were investigated. Photoelasticity imaging was used to visualize elastic wave propagation in model stones and compare results to numerical calculations. Epoxy and glass stone models were made into rectangular, cylindrical, or irregular geometries and exposed in a degassed water bath to focused ultrasound bursts at different frequencies. A high-speed camera was used to record images of the stone during exposure through a circular polariscope backlit by a monochromatic flash source. Imaging showed the development of periodic stresses in the stone body with a pattern dependent on frequency. These patterns were identified as guided wave modes in cylinders and plates, which formed standing waves upon reflection from the distal surfaces of the stone model, producing specific locations of stress concentration in the models. Measured phase velocities compared favorably to numerically calculated modes dependent on frequency and material. Artificial stones exposed to bursts produced cracks at positions anticipated by this mechanism. These results support guided wave generation and reflection as a mechanism of stone fracture in burst wave lithotripsy.

More Publications

Inventions

Systems and Methods for Measuring Pressure Distributions of Acoustic Beams from Ultrasound Sources

The present technology relates generally to receiving arrays to measure a characteristic of an acoustic beam and associated systems and methods.

Patent Number: 10,598,773

Oleg Sapozhnikov, Wayne Kreider, Adam Maxwell, Vera Khokhlova

More Info

Patent

24 Mar 2020

The present technology relates generally to receiving arrays to measure a characteristic of an acoustic beam and associated systems and methods. The receiving arrays can include elongated elements having at least one dimension, such as a length, that is larger than a width of an emitted acoustic beam and another dimension, such as a width, that is smaller than half of a characteristic wavelength of an ultrasound wave. The elongated elements can be configured to capture waveform measurements of the beam based on a characteristic of the emitted acoustic beam as the acoustic beam crosses a plane of the array, such as a transverse plane. The methods include measuring at least one characteristic of an ultrasound source using an array-based acoustic holography system and defining a measured hologram at the array surface based, at least in part, on the waveform measurements. The measured hologram can be processed to reconstruct a characteristic of the ultrasound source. The ultrasound source can be calibrated and/or re-calibrated based on the characteristic.

Noninvasive Fragmentation of Urinary Tract Stones with Focused Ultrasound

Patent Number: 10,251,657

Adam Maxwell, Mike Bailey, Bryan Cunitz, Wayne Kreider, Oleg Sapozhnikov

More Info

Patent

9 Apr 2019

Methods, computing devices, and a computer-readable medium are described herein related to fragmenting or comminuting an object in a subject using a burst wave lithotripsy (BWL) waveform. A computing device, such a computing device coupled to a transducer, may carry out functions for producing a BWL waveform. The computing device may determine a burst frequency for a number of bursts in the BWL waveform, where the number of bursts includes a number of cycles. Further, the computing device may determine a cycle frequency for the number of cycles. Yet further, the computing device may determine a pressure amplitude for the BWL waveform, where the pressure amplitude is less than or equal to 8 MPa. In addition, the computing device may determine a time period for producing the BWL waveform.

Determining a Presence of an Object

Patent Number: 10,136,835

Mike Bailey, Wei Lu, Oleg Sapozhnikov, Bryan Cunitz

More Info

Patent

27 Nov 2018

Methods, computing devices, and computer-readable medium are described herein related to producing detection signals configured to induce an excited state of an object. A computing device may receive reflection signals, where the reflection signals correspond to at least one detection signals reflected from the object. Based on the received reflection signals, a presence of the object in the excited state may be determined. Further, an output device may provide an indication of the presence of the object in the excited state.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close