APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Oleg Sapozhnikov

Senior Principal Engineer

Email

olegs@apl.washington.edu

Phone

206-543-1385

Education

M.S. Physics, Moscow State University, 1985

Ph.D. Acoustics, Moscow State University, 1988

Videos

Ultrasonic tweezers: Technology to lift and steer solid objects in a living body

In a recent paper, a CIMU team describes successful experiments to manipulate a solid object within a living body with ultrasound beams transmitted through the skin.

More Info

15 Jul 2020

A collaborative, international research teams developed and tuned an ultrasound transducer to create vortex shaped beams that can trap, grab, levitate, and move in three dimensions mm-scale objects. The team is working to apply this technology to their all-in-one kidney stone treatment system that, in clinical trials, uses ultrasound to non-invasively break, erode, and move stones and stone fragments out of the kidney so that they may pass naturally from the body.

Mechanical Tissue Ablation with Focused Ultrasound

An experimental noninvasive surgery method uses nonlinear ultrasound pulses to liquefy tissue at remote target sites within a small focal region without damaging intervening tissues. A multi-institution, international team led by CIMU researchers is applying the method to the focal treatment of prostate tumors.

More Info

19 Mar 2020

Boiling histotripsy utilizes sequences of millisecond-duration HIFU pulses with high-amplitude shocks that form at the focus by nonlinear propagation effects. Due to strong attenuation of the ultrasound energy at the shocks, these nonlinear waves rapidly heat tissue and generate millimeter-sized boiling bubbles at the focus within each pulse. Then the further interaction of subsequent shocks with the vapor cavity causes tissue disintegration into subcellular debris through the acoustic atomization mechanism.

The method was proposed at APL-UW in collaboration with Moscow State University (Russia) and now is being evaluated for various clinical applications. It has particular promise because of its important clinical advantages: the treatment of tissue volumes can be accelerated while sparing adjacent structures and not injuring intervening tissues; it generates precisely controlled mechanical lesions with sharp margins; the method can be implemented in existing clinical systems; and it can be used with real-time ultrasound imaging for targeting, guidance, and evaluation of outcomes. In addition, compared to thermal ablation, BH may lead to faster resorption of the liquefied lesion contents.

Characterizing Medical Ultrasound Sources and Fields

For every medical ultrasound transducer it's important to characterize the field it creates, whether for safety of imaging or efficacy of therapy. CIMU researchers measure a 2D acoustic pressure distribution in the beam emanating from the source transducer and then reconstruct mathematically the exact field on the surface of the transducer and in the entire 3D space.

11 Sep 2017

More Videos

Publications

2000-present and while at APL-UW

A prototype therapy system for boiling histotripsy in abdominal targets based on a 256-element spiral array

Bawiec, C.R., T.D. Khokhlova, O.A Sapozhnikov, P.B. Rosnitskiy, B.W. Cunitz, M.A. Ghanem, C. Hunter, W. Kreider, G.R. Schade, P.V. Yuldashev, and V.A. Khokhlova, "A prototype therapy system for boiling histotripsy in abdominal targets based on a 256-element spiral array," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 1496-1510, doi:10.1109/TUFFC.2020.3036580, 2021.

More Info

1 May 2021

Boiling histotripsy (BH) uses millisecond-long ultrasound (US) pulses with high-amplitude shocks to mechanically fractionate tissue with potential for real-time lesion monitoring by US imaging. For BH treatments of abdominal organs, a high-power multielement phased array system capable of electronic focus steering and aberration correction for body wall inhomogeneities is needed. In this work, a preclinical BH system was built comprising a custom 256-element 1.5-MHz phased array (Imasonic, Besançon, France) with a central opening for mounting an imaging probe. The array was electronically matched to a Verasonics research US system with a 1.2-kW external power source. Driving electronics and software of the system were modified to provide a pulse average acoustic power of 2.2 kW sustained for 10 ms with a 1–2-Hz repetition rate for delivering BH exposures. System performance was characterized by hydrophone measurements in water combined with nonlinear wave simulations based on the Westervelt equation. Fully developed shocks of 100-MPa amplitude are formed at the focus at 275-W acoustic power. Electronic steering capabilities of the array were evaluated for shock-producing conditions to determine power compensation strategies that equalize BH exposures at multiple focal locations across the planned treatment volume. The system was used to produce continuous volumetric BH lesions in ex vivo bovine liver with 1-mm focus spacing, 10-ms pulselength, five pulses/focus, and 1% duty cycle.

A review on B/A measurement methods with a clinical perspective

Panfilova, A., R.J.G. van Sloun, H. Wijkstra, O.A. Sapozhnikov, and M. Mischi, "A review on B/A measurement methods with a clinical perspective," J. Acoust. Soc. Am., 149, doi:10.1121/10.0003627, 2021.

More Info

2 Apr 2021

The nonlinear parameter of ultrasound B/A has shown to be a useful diagnostic parameter, reflecting medium content, structure, and temperature. Despite its recognized values, B/A is not yet used as a diagnostic tool in the clinic due to the limitations of current measurement and imaging techniques. This review presents an extensive and comprehensive overview of the techniques developed for B/A measurement of liquid and liquid-like media (e.g., tissue), identifying the methods that are most promising from a clinical perspective. This work summarizes the progress made in the field and the typical challenges on the way to B/A estimation. Limitations and problems with the current techniques are identified, suggesting directions that may lead to further improvement. Since the basic theory of the physics behind the measurement strategies is presented, it is also suited for a reader who is new to nonlinear ultrasound.

Phase-aberration correction for HIFU therapy using a multielement array and backscattering of nonlinear pulses

Thomas, G.P.L., T.D. Khokhlova, C.R. Bawiec, A.T. Peek, O.A. Sapozhnikov, M. O'Donnell, and V.A. Khokhlova, "Phase-aberration correction for HIFU therapy using a multielement array and backscattering of nonlinear pulses," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 1040-1050, doi:0.1109/TUFFC.2020.3030890, 2021.

More Info

1 Apr 2021

Phase aberrations induced by heterogeneities in body wall tissues introduce a shift and broadening of the high-intensity focused ultrasound (HIFU) focus, associated with decreased focal intensity. This effect is particularly detrimental for HIFU therapies that rely on shock front formation at the focus, such as boiling histotripsy (BH). In this article, an aberration correction method based on the backscattering of nonlinear ultrasound pulses from the focus is proposed and evaluated in tissue-mimicking phantoms. A custom BH system comprising a 1.5-MHz 256-element array connected to a Verasonics V1 engine was used as a pulse/echo probe. Pulse inversion imaging was implemented to visualize the second harmonic of the backscattered signal from the focus inside a phantom when propagating through an aberrating layer. Phase correction for each array element was derived from an aberration-correction method for ultrasound imaging that combines both the beamsum and the nearest neighbor correlation method and adapted it to the unique configuration of the array. The results were confirmed by replacing the target tissue with a fiber-optic hydrophone. Comparing the shock amplitude before and after phase-aberration correction showed that the majority of losses due to tissue heterogeneity were compensated, enabling fully developed shocks to be generated while focusing through aberrating layers. The feasibility of using a HIFU phased-array transducer as a pulse-echo probe in harmonic imaging mode to correct for phase aberrations was demonstrated.

More Publications

Inventions

Lithotripsy That Tunes the Frequency to the Stone Size

Record of Invention Number: 49262

Mike Bailey, Adam Maxwell, Oleg Sapozhnikov

Disclosure

12 May 2021

Methods for Separating, Concentrating, and/or Differentiating Between Cells from a Cell Sample

Patent Number: 10,794,827

Tom Matula, Oleg Sapozhnikov, Brian MacConaghy

More Info

Patent

6 Oct 2020

Embodiments are generally related to differentiating and/or separating portions of a sample that are of interest from the remainder of the sample. Embodiments may be directed towards separating cells of interest from a cell sample. In some embodiments, acoustic impedances of the cells of interest may be modified. For example, the acoustic properties of the cells of interest may be modified by attaching bubbles to the cells of interest. The cell sample may then be subjected to an acoustic wave. The cells of interest may be differentiated and/or separated from the remainder of the sample based on relative displacements and/or volumetric changes experienced by the cells of interest in response thereto. The cells of interest may be separated using a standing wave and sorted into separate channels of a flow cell. Optionally, the cells may be interrogated by a light source and differentiated by signals generated in response thereto.

Systems and Methods for Measuring Pressure Distributions of Acoustic Beams from Ultrasound Sources

The present technology relates generally to receiving arrays to measure a characteristic of an acoustic beam and associated systems and methods.

Patent Number: 10,598,773

Oleg Sapozhnikov, Wayne Kreider, Adam Maxwell, Vera Khokhlova

More Info

Patent

24 Mar 2020

The present technology relates generally to receiving arrays to measure a characteristic of an acoustic beam and associated systems and methods. The receiving arrays can include elongated elements having at least one dimension, such as a length, that is larger than a width of an emitted acoustic beam and another dimension, such as a width, that is smaller than half of a characteristic wavelength of an ultrasound wave. The elongated elements can be configured to capture waveform measurements of the beam based on a characteristic of the emitted acoustic beam as the acoustic beam crosses a plane of the array, such as a transverse plane. The methods include measuring at least one characteristic of an ultrasound source using an array-based acoustic holography system and defining a measured hologram at the array surface based, at least in part, on the waveform measurements. The measured hologram can be processed to reconstruct a characteristic of the ultrasound source. The ultrasound source can be calibrated and/or re-calibrated based on the characteristic.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close