Campus Map

Mike Steele

Senior Principal Oceanographer






Dr. Steele is interested in the large-scale circulation of sea ice and water in the Arctic Ocean. He uses both observed data and numerical model simulations to better understand the average circulation pathways as well as the causes of interannual variations in these pathways. Analysis of ocean observations has focused on the upper layers, which are generally quite cold and fresh.

Dr. Steele has active field programs in which data are collected in the field by his team and others, using aircraft, ships, and autonomous sensors like buoys and profiling floats. He is also involved with efforts to improve computer models of the arctic marine system, via the Arctic Ocean Model Intercomparison Project, AOMIP.

Funding for his research comes from the National Science Foundation, NASA, and the National Oceanic and Atmospheric Agency (NOAA). He is involved with many outreach programs such as lectures to K-12 and college students. Mike Steele began work at the Polar Science Center in 1987.

Department Affiliation

Polar Science Center


B.A. Physics, Reed College, 1981

Ph.D. Geophysical Fluid Dynamics, Princeton University, 1987


North Pole Environmental Observatory

The observatory is staffed by an international research team that establishes a camp at the North Pole each spring to take the pulse of the Arctic Ocean and learn how the world's northernmost sea helps regulate global climate.


Producing an Updated Synthesis of the Arctic's Marine Primary Production Regime and its Controls

The focus of this project is to synthesize existing studies and data relating to Arctic Ocean primary production and its changing physical controls such as light, nutrients, and stratification, and to use this synthesis to better understand how primary production varies in time and space and as a function of climate change.


A Modular Approach to Building an Arctic Observing System for the IPY and Beyond in the Switchyard Region of the Arctic Ocean

This project will provided for the design, development, and implementation of a component of an Arctic Ocean Observing System in the Switchyard region of the Arctic Ocean (north of Greenland and Nares Strait) that will serve the scientific studies developed for the IPY (International Polar Year), SEARCH (Study of Environmental ARctic Change), and related programs. Specifically, the project will continue and expand two aircraft-based sections between Alert and the North Pole for long-term observation of hydrographic properties and a set of tracers aimed at resolving relative age structure and freshwater components in the upper water column.


More Projects


Polar Science Weekend @ Pacific Science Center

This annual event at the Pacific Science Center shares polar science with thousands of visitors. APL-UW researchers inspire appreciation and interest in polar science through dozens of live demonstrations and hands-on activities.

More Info

10 Mar 2017

Polar research and technology were presented to thousands of visitors by APL-UW staff during the Polar Science Weekend at Seattle's Pacific Science Center. The goal of is to inspire an appreciation and interest in science through one-on-one, face-to-face interactions between visitors and scientists. Guided by their 'polar passports', over 10,000 visitors learned about the Greenland ice sheet, the diving behavior of narwhals, the difference between sea ice and freshwater ice, how Seagliders work, and much more as they visited dozens of live demonstrations and activities.

The Polar Science Weekend has grown from an annual outreach event to an educational research project funded by NASA, and has become a model for similar activities hosted by the Pacific Science Center. A new program trains scientists and volunteers how to interact with the public and how to design engaging exhibits.

Arctic Sea Ice Extent and Volume Dip to New Lows

By mid-September, the sea ice extent in the Arctic reached the lowest level recorded since 1979 when satellite mapping began.

More Info

15 Oct 2012

APL-UW polar oceanographers and climatologists are probing the complex ice–ocean–atmosphere system through in situ and remote sensing observations and numerical model simulations to learn how and why.

Changing Freshwater Pathways in the Arctic Ocean

Freshening in the Canada Basin of the Arctic Ocean began in the 1990s. Polar scientist Jamie Morison and colleagues report new insights on the freshening based in part on Arctic-wide views from two satellite system.

More Info

5 Jan 2012

The Arctic Ocean is a repository for a tremendous amount of river runoff, especially from several huge Russian rivers. During the spring of 2008, APL-UW oceanographers on a hydrographic survey in the Arctic detected major shifts in the amount and distribution of fresh water. The Canada basin had freshened, but had the entire Arctic Ocean?

Analysis of satellite records shows that salinity increased on the Russian side of the Arctic and decreased in the Beaufort Sea on the Canadian side. With an Arctic-wide view of circulation from satellite sensors, researchers were able to determine that atmospheric forcing had shifted the transpolar drift counterclockwise and driven Russian runoff east to the Canada Basin.

More Videos


2000-present and while at APL-UW

Comparison of GHRSST SST analysis in the Arctic Ocean and Alaskan coastal waters using saildrones

Vazquez-Cuervo, J., S.L. Castro, M. Steele, C. Gentemann, J. Gomez-Valdes, and W. Tang, "Comparison of GHRSST SST analysis in the Arctic Ocean and Alaskan coastal waters using saildrones," Remote Sens., 14, doi:10.3390/rs14030692, 2022.

More Info

1 Feb 2022

There is high demand for complete satellite SST maps (or L4 SST analyses) of the Arctic regions to monitor the rapid environmental changes occurring at high latitudes. Although there are a plethora of L4 SST products to choose from, satellite-based products evolve constantly with the advent of new satellites and frequent changes in SST algorithms, with the intent of improving absolute accuracies. The constant change of these products, as reflected by the version product, make it necessary to do periodic validations against in situ data. Eight of these L4 products are compared here against saildrone data from two 2019 campaigns in the western Arctic, as part of the MISST project. The accuracy of the different products is estimated using different statistical methods, from standard and robust statistics to Taylor diagrams. Results are also examined in terms of spatial scales of variability using auto- and cross-spectral analysis. The three products with the best performance, at this point and time, are used in a case study of the thermal features of the Yukon–Kuskokwim delta. The statistical analyses show that two L4 SST products had consistently better relative accuracy when compared to the saildrone subsurface temperatures. Those are the NOAA/NCEI DOISST and the RSS MWOI SSTs. In terms of the spectral variance and feature resolution, the UK Met Office OSTIA product appears to outperform all others at reproducing the fine scale features, especially in areas of high spatial variability, such as the Alaska coast. It is known that L4 analyses generate small-scale features that get smoothed out as the SSTs are interpolated onto spatially complete grids. However, when the high-resolution satellite coverage is sparse, which is the case in the Arctic regions, the analyses tend to produce more spurious small-scale features. The analyses here indicate that the high-resolution coverage, attainable with current satellite infrared technology, is too sparse, due to cloud cover to support very high resolution L4 SST products in high latitudinal regions. Only for grid resolutions of ~9–10 km or greater does the smoothing of the gridding process balance out the small-scale noise resulting from the lack of high-resolution infrared data. This scale, incidentally, agrees with the Rossby deformation radius in the Arctic Ocean (~10 km).

Increasing winter ocean-to-ice heat flux in the Beaufort Gyre region, Arctic Ocean over 2006–2018

Zhong, W.L., S.T. Cole, J. Zhang, R. Lei, and M. Steele, "Increasing winter ocean-to-ice heat flux in the Beaufort Gyre region, Arctic Ocean over 2006–2018," Geophys. Res. Lett., 49, doi:10.1029/2021GL096216, 2022.

More Info

29 Jan 2022

Ocean-to-ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2 over 2006–2012 to 1.63 ± 0.08 W/m2 over 2013–2018. We find that this is a result of thinner and less-compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.

Recent upper Arctic Ocean warming expedited by summertime atmospheric processes

Li, Z., Q.H. Ding, M. Steele, and A. Schweiger, "Recent upper Arctic Ocean warming expedited by summertime atmospheric processes," Nat. Commun., 13, doi:10.1038/s41467-022-28047-8, 2022.

More Info

18 Jan 2022

Low-frequency internal atmospheric variability accounts for about one quarter of observed Arctic Ocean warming over the past four decades and 60% of the accelerated warming from 2000 to 2018.

The observed upper (0–-50 m) Arctic Ocean warming since 1979 has been primarily attributed to anthropogenically driven changes in the high latitudes. Here, using both observational and modeling analyses, we demonstrate that a multiyear trend in the summertime large-scale atmospheric circulation, which we ascribe to internal variability, has played an important role in upper ocean warming in summer and fall over the past four decades due to sea ice-albedo effect induced by atmospheric dynamics. Nudging experiments in which the wind fields are constrained toward the observed state support this mechanism and suggest that the internal variability contribution to recent upper Arctic Ocean warming accounts for up to one quarter of warming over the past four decades and up to 60% of warming from 2000 to 2018. This suggests that climate models need to replicate this important internal process in order to realistically simulate Arctic Ocean temperature variability and trends.

More Publications

In The News

Arctic's 'last ice area' may be less resistant to global warming

The New York Times, Henry Fountain

The region, which could provide a last refuge for polar bears and other Arctic wildlife that depends on ice, is not as stable as previously thought, according to a new study.

1 Jul 2021

Arctic's 'last ice area' shows earlier-than-expected melt

Associated Press, Seth Borenstein

Part of the Arctic is nicknamed the 'Last Ice Area,' because floating sea ice there is usually so thick that it’s likely to withstand global warming for decades. So, scientists were shocked last summer when there was suddenly enough open water for a ship to pass through.

1 Jul 2021

Climate change: 'Last refuge' for polar bears is vulnerable to warming

BBC News, Matt McGrath

The region, dubbed the 'last ice area' had been expected to stay frozen far longer than other parts of the Arctic. But new analysis says that this area suffered record melting last summer. The researchers say that high winds allied to a changing climate were behind the unexpected decline.

1 Jul 2021

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center