Kyla Drushka Principal Oceanographer Affiliate Assistant Professor, Oceanography kdrushka@apl.washington.edu Phone 206-543-6858 |
Education
B.S. Physics, McGill University, 2004
Ph.D. Physical Oceanography, Scripps Institution of Oceanography, 2011
Videos
NASA Expedition Measures the Salty Seas Chief Scientist Andy Jessup and a multi-institutional team of researchers embarked on an expedition to the tropical Pacific Ocean in early August 2016. |
More Info |
19 Aug 2016
|
|||||||
The team is measuring near-surface ocean salinity and the atmospheric and oceanic dynamics that control it. For their part, researchers from APL-UW’s Air-Sea Interactions and Remote Sensing Department are using several platforms on the R/V Revelle to measure the ocean’s response to freshwater input during and immediately after intense bursts of rainfall that are typical of the eastern tropical Pacific Ocean |
Publications |
2000-present and while at APL-UW |
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations Mecking, S., and K. Drushka, "Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations," Biogeosciences, 21, 1117-1133, doi:10.5194/bg-21-1117-2024, 2024. |
More Info |
7 Mar 2024 |
|||||||
Understanding the response of the ocean to global warming, including the renewal of ocean waters from the surface (ventilation), is important for future climate predictions. Oxygen distributions in the ocean thermocline have proven an effective way to infer changes in ventilation because physical processes (ventilation and circulation) that supply oxygen are thought to be primarily responsible for changes in interior oxygen concentrations. Here, the focus is on the North Pacific thermocline, where some of the world's oceans' largest oxygen variations have been observed. These variations, described as bi-decadal cycles on top of a small declining trend, are strongest on subsurface isopycnals that outcrop into the mixed layer of the northwestern North Pacific in late winter. In this study, surface density time series are reconstructed in this area using observational data only and focusing on the time period from 1982, the first full year of the satellite sea surface temperature record, to 2020. It is found that changes in the annual maximum outcrop area of the densest isopycnals outcropping in the northwestern North Pacific are correlated with interannual oxygen variability observed at Ocean Station P (OSP) downstream at about a 10-year lag. The hypothesis is that ocean ventilation and uptake of oxygen is greatly reduced when the outcrop areas are small and that this signal travels within the North Pacific Current to OSP, with 10 years being at the higher end of transit times reported in other studies. It is also found that sea surface salinity (SSS) dominates over sea surface temperature (SST) in driving interannual fluctuations in annual maximum surface density in the northwestern North Pacific, highlighting the role that salinity may play in altering ocean ventilation. In contrast, SSS and SST contribute about equally to the long-term declining surface density trends that are superimposed on the interannual cycles. |
Ocean mesoscale and frontal-scale oceanatmosphere interactions and influence on large-scale climate: A review Seo, H., and 17 others including K. Drushka, "Ocean mesoscale and frontal-scale oceanatmosphere interactions and influence on large-scale climate: A review," J. Clim., 36, 1981-2013, doi:10.1175/JCLI-D-21-0982.1, 2023. |
More Info |
1 Apr 2023 |
|||||||
Two decades of high-resolution satellite observations and climate modeling studies have indicated strong oceanatmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The airsea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale airsea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale airsea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale airsea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale airsea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future airsea interaction research. |
Air-ice-ocean interactions and the delay of autumn freeze-up in the Western Arctic Ocean Thomson, J., M. Smith, K. Drushka, and C. Lee, "Air-ice-ocean interactions and the delay of autumn freeze-up in the Western Arctic Ocean," Oceanography, 35, 76-87, doi:10.5670/oceanog.2022.124, 2022. |
More Info |
1 Dec 2022 |
|||||||
Arctic sea ice is becoming a more seasonal phenomenon as a direct result of global warming. Across the Arctic, the refreezing of the ocean surface each autumn now occurs a full month later than it did just 40 years ago. In the western Arctic (Canada Basin), the delay is related to an increase in the seasonal heat stored in surface waters; cooling to the freezing point requires more heat loss to the atmosphere in autumn. In the marginal ice zone, the cooling and freezing process is mediated by ocean mixing and by the presence of remnant sea ice, which may precondition the ocean surface for refreezing. The delay in refreezing has many impacts, including increased open ocean exposure to autumn storms, additional wave energy incident to Arctic coasts, shifts in animal migration patterns, and extension of the time window for transit by commercial ships along the Northern Sea Route. This article reviews the observed trends in the western Arctic and the processes responsible for these trends, and provides brief in situ observations from the Beaufort Sea that illustrate some of these processes. |
Small-scale spatial variations of air-sea heat, moisture, and buoyancy fluxes in the tropical trade winds Iyer, S., K. Drushka, E.J. Thompson, and J. Thomson, "Small-scale spatial variations of air-sea heat, moisture, and buoyancy fluxes in the tropical trade winds," J. Geophys. Res., 127, doi:10.1029/2022JC018972, 2022. |
More Info |
1 Oct 2022 |
|||||||
Observations from two autonomous Wave Gliders and six Lagrangian Surface Wave Instrument Float with Tracking drifters in the northwestern tropical Atlantic during the JanuaryFebruary 2020 NOAA Atlantic Tradewind Ocean-atmosphere Mesoscale Interaction Campaign (ATOMIC) are used to evaluate the spatial variability of bulk air-sea heat, moisture, and buoyancy fluxes. Sea surface temperature (SST) gradients up to 0.7°C across 10100 km frequently persisted for several days. SST gradients were a leading cause of systematic spatial air-sea sensible heat flux gradients, as variations over 5 Wm-2 across under 20 km were observed. Wind speed gradients played no significant role and air temperature adjustments to SST gradients sometimes acted to reduce spatial flux gradients. Wind speed, air temperature, and air humidity caused high-frequency spatial and temporal flux variations on both sides of SST gradients. A synthesis of observations demonstrated that fluxes were usually enhanced on the warm SST side of gradients compared to the cold SST side, with variations up to 10 Wm-2 in sensible heat and upward buoyancy fluxes and 50 Wm-2 in latent heat flux. Persistent SST gradients and high-frequency air temperature variations each contributed up to 5 Wm-2 variability in sensible heat flux. Latent heat flux was instead mostly driven by air humidity variability. Atmospheric gradients may result from convective structures or high-frequency turbulent fluctuations. Comparisons with 0.05°-resolution daily satellite SST observations demonstrate that remote sensing observations or lower-resolution models may not capture the small-scale spatial ocean variability present in the Atlantic trade wind region. |
Focused observations for expanded comprehension: Advancing tropical Pacific coupled modeling and process understanding DeMott, C.A., A. Subramanian, S. Chen, K. Drushka, Y. Fujii, A. Sutton, J. Sprintall, and D. Zhang, "Focused observations for expanded comprehension: Advancing tropical Pacific coupled modeling and process understanding," Bull. Am. Meteorol. Soc., 103, E1644-E1649, doi:10.1175/BAMS-D-22-0041.1, 2022. |
1 Jul 2022 |
Seasonality of the mesoscale inverse cascade as inferred from global scale-dependent eddy energy observations Steinberg, J.M., S.T. Cole, K. Drushka, and R.P. Abernathy, "Seasonality of the mesoscale inverse cascade as inferred from global scale-dependent eddy energy observations," J. Phys. Oceanogr., 52, 1677-1691, doi:10.1175/JPO-D-21-0269.1, 2022. |
More Info |
6 May 2022 |
|||||||
Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60300 km scales. A geographic and scale dependent seasonal cycle appears throughout much of the mid-latitudes, with eddy kinetic energy at scales less than 60 km peaking 14 months before that at 60300 km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy are seasonally varying. In mid-latitudes, the conversion rate peaks 02 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade, and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed. |
Variations in wave slope and momentum flux from wavecurrent interactions in the tropical trade winds Iyer, S., J. Thomson, E. Thompson, and K. Drushka, "Variations in wave slope and momentum flux from wavecurrent interactions in the tropical trade winds," J. Geophys. Res., 127, doi:10.1029/2021JC018003, 2022. |
More Info |
1 Mar 2022 |
|||||||
Observations from six Lagrangian Surface Wave Instrument Float with Tracking drifters in JanuaryFebruary 2020 in the northwestern tropical Atlantic during the Atlantic Tradewind Oceanatmosphere Mesoscale Interaction Campaign are used to evaluate the influence of wavecurrent interactions on wave slope and momentum flux. At observed wind speeds of 4–12 ms-1, wave mean square slopes are positively correlated with wind speed. Wave-relative surface currents varied significantly, from opposing the wave direction at 0.24 ms-1 to following the waves at 0.47 ms-1. Wave slopes are 5%10% higher when surface currents oppose the waves compared to when currents strongly follow the waves, consistent with a conservation of wave energy flux across gradients in currents. Assuming an equilibrium frequency range in the wave spectrum, wave slope is proportional to wind friction velocity and momentum flux. The observed variation in wave slope equates to a 10%20% variation in momentum flux over the range of observed wind speeds (412 ms-1), with larger variations at higher winds. At wind speeds over 8 ms-1, momentum flux varies by at least 6% more than the variation expected from current-relative winds alone, and suggests that wave-current interactions can generate significant spatial and temporal variability in momentum fluxes in this region of prevailing trade winds. Results and data from this study motivate the continued development of fully coupled atmosphere-ocean-wave models. |
The influence of preexisting stratification and tropical rain modes on the mixed layer salinity response to rainfall Iyer, S., and K. Drushka, "The influence of preexisting stratification and tropical rain modes on the mixed layer salinity response to rainfall," J. Geophys. Res., 126, doi:10.1029/2021JC017574, 2021. |
More Info |
1 Oct 2021 |
|||||||
The freshwater input from rain to the surface ocean is a key component of the global water cycle. Frequent rainfall in the inter-tropical convergence zone creates regions of strong surface stratification and low salinity, which vary seasonally. We evaluate how variations in rain type and preexisting upper ocean stratification influence the timing and duration of the salinity response to rainfall using the General Ocean Turbulence Model. A series of model simulations was run by prescribing three typical background stratification conditions and idealized rain and wind forcing that was consistent with observed convective, stratiform, and mixed convective and stratiform rainfall. Background stratification was assessed using underway CTD observations and rain forcing was identified from mooring observations collected in the eastern tropical Pacific during the second Salinity Processes in the Upper Ocean Regional Study. Model results show that strong stratification, whether preexisting or from convective rainfall, inhibits downward mixing of freshwater and allows near-surface salinity anomalies to persist following rain. In contrast, when stratiform rain precedes convective rain, salinity anomalies are quickly mixed downward and longer lasting deeper in the mixed layer. This implies that accurately quantifying the salinity structure following rain should consider preexisting stratification and the type of rainfall. Furthermore, patterns of rainfall and stratification likely affect the bias between salinity observations at the surface and deeper in the mixed layer. Because satellite rain data do not correctly represent the small scales of rain forcing, the small-scale surface salinity response to rain cannot be predicted from satellite data. |
EUREC4A Stevens, B., and many others including K. Drushka, S. Iyer, and J. Thomson, "EUREC4A," Earth Syst. Sci. Data, 13, 4067-4119, doi:10.5194/essd-13-4067-2021, 2021. |
More Info |
25 Aug 2021 |
|||||||
The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement. |
Turbulence within rain-formed fresh lenses during the SPURS-2 Experiment Iyer, S., and K. Drushka, "Turbulence within rain-formed fresh lenses during the SPURS-2 Experiment," J. Phys. Oceanogr., 51, 1705–1721, doi:10.1175/JPO-D-20-0303.1, 2021. |
More Info |
1 May 2021 |
|||||||
Observations of salinity, temperature, and turbulent dissipation rate were made in the top meter of the ocean using the ship-towed Surface Salinity Profiler as part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2) to assess the relationships between wind, rain, near-surface stratification, and turbulence. A wide range of wind and rain conditions were observed in the eastern tropical Pacific Ocean near 10°N, 125°W in summerautumn 2016 and 2017. Wind was the primary driver of near-surface turbulence and the mixing of rain-formed fresh lenses, with lenses generally persisting for hours when wind speeds were under 5 m s-1 and mixing away immediately at higher wind speeds. Rain influenced near-surface turbulence primarily through stratification. Near-surface stratification caused by rainfall or diurnal warming suppressed deeper turbulent dissipation rates when wind speeds were under 3 m s-1. In one case with 45 m s-1 winds, rain-induced stratification enhanced dissipation rates within the stratified layer. At wind speeds above 78 m s-1, strong stratification was not observed in the upper meter during rain, indicating that rain lenses do not form at wind speeds above 8 m s-1. Raindrop impacts enhanced turbulent dissipation rates at these high wind speeds in the absence of near-surface stratification. Measurements of air-sea buoyancy flux, wind speed, and near-surface turbulence can be used to predict the presence of stratified layers. These findings could be used to improve model parameterizations of air-sea interactions and, ultimately, our understanding of the global water cycle. |
Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) Quinn, P.K., and 34 others including K. Drushka, S. Iyer, and J. Thomson, "Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC)," Earth Syst. Sci. Data, 13, 1759-1790, doi:10.5194/essd-13-1759-2021, 2021. |
More Info |
29 Apr 2021 |
|||||||
The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) took place from 7 January to 11 July 2020 in the tropical North Atlantic between the eastern edge of Barbados and 51°W, the longitude of the Northwest Tropical Atlantic Station (NTAS) mooring. Measurements were made to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Multiple platforms were deployed during ATOMIC including the NOAA RV Ronald H. Brown (RHB) (7 January to 13 February) and WP-3D Orion (P-3) aircraft (17 January to 10 February), the University of Colorado's Robust Autonomous Aerial Vehicle-Endurant Nimble (RAAVEN) uncrewed aerial system (UAS) (24 January to 15 February), NOAA- and NASA-sponsored Saildrones (12 January to 11 July), and Surface Velocity Program Salinity (SVPS) surface ocean drifters (23 January to 29 April). The RV Ronald H. Brown conducted in situ and remote sensing measurements of oceanic and atmospheric properties with an emphasis on mesoscale oceanicatmospheric coupling and aerosolcloud interactions. In addition, the ship served as a launching pad for Wave Gliders, Surface Wave Instrument Floats with Tracking (SWIFTs), and radiosondes. Details of measurements made from the RV Ronald H. Brown, ship-deployed assets, and other platforms closely coordinated with the ship during ATOMIC are provided here. These platforms include Saildrone 1064 and the RAAVEN UAS as well as the Barbados Cloud Observatory (BCO) and Barbados Atmospheric Chemistry Observatory (BACO). Inter-platform comparisons are presented to assess consistency in the data sets. Data sets from the RV Ronald H. Brown and deployed assets have been quality controlled and are publicly available at NOAA's National Centers for Environmental Information (NCEI) data archive (https://www.ncei.noaa.gov/archive/accession/ATOMIC-2020, last access: 2 April 2021). Point-of-contact information and links to individual data sets with digital object identifiers (DOIs) are provided herein. |
Lagrangian reconstruction to extract small-scale salinity variability from SMAP observations Barceló-Llull, B., K. Drushka, and P. Gaube, "Lagrangian reconstruction to extract small-scale salinity variability from SMAP observations," J. Geophys. Res., 126, doi:10.1029/2020JC016477, 2021. |
More Info |
1 Mar 2021 |
|||||||
As the resolution of observations and models improves, emerging evidence indicates that ocean variability on 1200 km scales is of fundamental importance to ocean circulation, air‐sea interaction, and biogeochemistry. In many regions, salinity variability dominates over thermal effects in forming density fronts. Unfortunately, current satellite observations of sea surface salinity (SSS) only resolve scales ࣙ40 km (or larger, depending on the product). In this study we investigate small‐scale variability (ࣘ25 km) by reconstructing gridded SSS observations made by the Soil Moisture Active Passive (SMAP) satellite in the northwest Atlantic Ocean. Using altimetric geostrophic currents, we numerically advect SMAP SSS fields to produce a Lagrangian reconstruction that represents small scales. Reconstructed fields are compared to in situ salinity observations made by a ship‐board thermosalinograph, revealing a marked improvement in small‐scale salinity variability when compared to the original SMAP fields, particularly from the continental shelf to the Gulf Stream. In the Sargasso Sea, however, both SMAP and the reconstructed fields contain higher variability than is observed in situ. Enhanced small‐scale salinity variability is concentrated in two bands: a northern band aligned with the continental shelfbreak, and a southern band aligned with the Gulf Stream mean position. Seasonal differences in the small‐scale variability appear to covary with the seasonal cycle of the large‐scale SSS gradients resulting from the freshening of the coastal waters during periods of elevated river outflow. |
California wildfire burns boundaries between science and art Bisson, K.M, and 20 others including P. Gaube and K. Drushka, "California wildfire burns boundaries between science and art," Oceanography, 33, 16-19, doi:10.5670/oceanog.2020.110, 2020. |
More Info |
1 Mar 2020 |
|||||||
Results from our 2017 cruise to the Santa Barbara Channel illustrate the value that student leadership training can bring to ocean science. The Across the Channel: Investigating Diel Dynamics (ACIDD) mission, conducted from December 16 to 22, 2017, aboard R/V Sally Ride, was led by two PhD students as co-principal investigators and chief scientists (authors Bisson and Baetge). The 21-member science team was composed almost entirely of our graduate student peers at the University of California, Santa Barbara (UCSB), as well as three artists. As an integrated team, we conceived, adapted, and executed research cruise plans and developed far-reaching connections with the public based on our coupled artistic-oceanographic pursuit. |
Intense and small freshwater pools from rainfall investigated during SPURS-2 on 9 November 2017 in the eastern tropical Pacific Reverdin, G., A. Supply, K. Drushka, E.J. Thompson, W.E. Asher, and A. Lourenço, "Intense and small freshwater pools from rainfall investigated during SPURS-2 on 9 November 2017 in the eastern tropical Pacific," J. Geophys. Res., 125, doi:10.1029/2019JC015558, 2020. |
More Info |
1 Feb 2020 |
|||||||
During the second Salinity Processes in the Upper Ocean Regional Study (SPURS‐2) 2017 tropical Pacific cruise, two drifters were deployed on 9 November. The drifters measured temperature and salinity in the top 36 cm, wave spectra, and the noise of rain drops. During a short nearly circular survey with a 1.8‐km radius around the drifters, the R/V Revelle measured airsea fluxes, as well as temperature and salinity stratification in the top 1 m from a towed surface salinity profiler (SSP). A C‐band weather radar measuring rain rate within 1‐ to 100‐km range of the ship observed discrete rain cells organized in a system moving from the southeast to the northwest. Some of the intense rain cells were small scale (1 km in diameter or less) with short lifetimes yet dropped more than 5 cm of water in half an hour near the drifters, whereas the ship measured short rain episodes totaling 1.3 cm of rainfall mostly accompanied by very low wind. The data indicate a large spatial heterogeneity in temperature and salinity, with near‐surface freshening of up to 9 psu measured at different times by the two drifters (separated by less than 500 m) and by the SSP. The drifters indicate deepening of the fresh and cool surface layer during the rain, which then thinned during the following 40 min with very low wind speed (<2 m/s). Patchy surface‐trapped cold and fresh layers were also observed by the SSP east of the drifters. The high spatial and temporal variability of rainfall and surface‐trapped fresh pools is discussed. |
Salinity Rain Impact Model (RIM) for SMAP Jacob, M.M., W.L. Jones, A. Santos-Garcia, K. Drushka, W.E. Asher, and C.M. Scavuzzo, "Salinity Rain Impact Model (RIM) for SMAP," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 16-79-1687, doi:10.1109/JSTARS.2019.2907275, 2019. |
More Info |
15 Jul 2019 |
|||||||
When oceanic rainfall occurs, it creates a vertical salinity profile that is fresher at the surface. This freshwater lens is mixed downward by turbulent diffusion, dissipating over a few hours until the upper layer (15 m depth) becomes well mixed. Thus, there will be a transient bias between the in situ bulk salinity and the satellite-measured sea surface salinity (SSS) (representative of the first centimeter of the ocean depth). Based on measurements of Aquarius (AQ) SSS under rainy conditions, a model called rain impact model (RIM) was developed to assess the SSS variations due to the accumulation of rainfall prior to the time of the AQ observation. RIM uses ocean surface salinities from hybrid coordinate ocean model and the NOAA global precipitation product, climate prediction center morphing, to estimate changes in the near-surface salinity profile. Also, the RIM analysis has been applied to soil moisture and ocean salinity with similar results observed. The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures SSS over a swath of 1000 km at 40-km resolution. SMAP can extend AQ salinity data record with improved temporal/spatial sampling. This paper describes RIM that simulates the effects of rain accumulation on SMAP SSS, showing good correlation between the model and the observed SSS values. Given the better resolution of SMAP, the goal of this paper is to continue the previous analysis of AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. |
Global patterns of submesoscale surface salinity variability Drushka, K., W.E. Asher, J. Sprintall, S.T. Fille, and C. Hoang, "Global patterns of submesoscale surface salinity variability," J. Phys. Oceanogr., 49, 1669-1685, doi: 10.1175/JPO-D-19-0018.1, 2019. |
More Info |
1 Jul 2019 |
|||||||
Surface salinity variability on O(110) km lateral scales (the submesoscale) generates density variability and thus has implications for submesoscale dynamics. Satellite salinity measurements represent a spatial average over horizontal scales of approximately 40100 km but are compared to point measurements for validation, so submesoscale salinity variability also complicates validation of satellite salinities. Here, we combine several databases of historical thermosalinograph (TSG) measurements made from ships to globally characterize surface submesoscale salinity, temperature, and density variability. In river plumes; regions affected by ice melt or upwelling; and the Gulf Stream, South Atlantic, and Agulhas Currents, submesoscale surface salinity variability is large. In these regions, horizontal salinity variability appears to explain some of the differences between surface salinities from the Aquarius and SMOS satellites and salinities measured with Argo floats. In other words, apparent satellite errors in highly variable regions in fact arise because Argo point measurements do not represent spatially averaged satellite data. Salinity dominates over temperature in generating submesoscale surface density variability throughout the tropical rainbands, in river plumes, and in polar regions. Horizontal density fronts on 10-km scales tend to be compensated (salinity and temperature have opposing effects on density) throughout most of the global oceans, with the exception of the south Indian and southwest Pacific oceans between 20° and 30°S, where fronts tend to be anticompensated. |
Estimating rain-generated turbulence at the ocean surface using the active controlled flux technique Asher, W.E., K. Drushka, A.T. Jessup, E.J. Thompson, and D. Clark, "Estimating rain-generated turbulence at the ocean surface using the active controlled flux technique," Oceanography, 32, 108-115, doi:10.5670/oceanog.2019.218, 2019. |
More Info |
14 Jun 2019 |
|||||||
Rain-generated lenses of fresher water at the ocean surface affect satellite remote sensing of salinity, mixed-layer dynamics, and air-sea exchange of heat, momentum, and gases. Understanding how rain and wind generate turbulence at the ocean surface is important in modeling the generation and evolution of these fresh lenses. This paper discusses the use of the active controlled flux technique (ACFT) to determine relative levels of turbulence in the top centimeter of the ocean surface in the presence of rain. ACFT measurements were made during the 2016 second Salinity Processes in the Upper-ocean Regional Study (SPURS-2) in the eastern equatorial Pacific Ocean. The data show that at wind speeds below 4 m s-1, the turbulence dissipation rate at the ocean surface (as parameterized by the water-side surface renewal time constant) is correlated with the instantaneous rain rate. However, at higher wind speeds, the wind stress dominates turbulence production and rain is not a significant source of turbulence. There is also evidence that internal waves can be a significant source of turbulence at the ocean surface under non-raining conditions when a diurnal warm layer is present. |
High-resolution rain maps from an X-band marine radar and their use in understanding ocean freshening Thompson, E.J., W.E. Asher, A.T. Jessup, and K. Drushka, "High-resolution rain maps from an X-band marine radar and their use in understanding ocean freshening," Oceanography, 32, 58-65, doi:10.5670/oceanog.2019.213, 2019. |
More Info |
14 Jun 2019 |
|||||||
Ship-based X-band radar observations of rain were collected with high spatial resolution during the 2016 and 2017 Salinity Processes in the Upper-ocean Regional Study 2 (SPURS-2) field experiments in the eastern tropical Pacific Ocean. These observations were collected with a repurposed marine radar that is not typically used for weather monitoring. The radar images captured during SPURS-2 show the spatial extent and variable intensity of rain at a horizontal resolution of 180 m within 30 km of the ship. When analyzed alongside collocated measurements of oceanic and atmospheric properties collected during SPURS-2, the radar-derived rain maps enable a clearer understanding of the impact of spatially and temporally varying freshwater fluxes on ocean salinity. Ocean surface freshening, measured by ship gauges, is found to be affected by local rain accumulation, and also by prior rain accumulation in surrounding locations that was measured by radar. In one example, the X-band marine radar measured rain directly ahead of the ship’s path. The ship then sampled a near-surface freshening signature within the time period expected based on the ship speed, ship heading, and rain area measured by the radar. |
Novel and flexible approach to access the open ocean: Uses of sailing research vessel Lady Amber during SPURS-2 Rainville, L., L.R. Centurioni, W.E. Asher, C.A. Clayson, K. Drushka, J.B. Edson, B.A. Hodges, V. Hormann, J.T. Farai, J.J. Schanze, and A.Y. Shcherbina, "Novel and flexible approach to access the open ocean: Uses of sailing research vessel Lady Amber during SPURS-2," Oceanography, 32, 116-121, doi:10.5670/oceanog.2019.219, 2019. |
More Info |
14 Jun 2019 |
|||||||
SPURS-2 (Salinity Processes in the Upper-ocean Regional Study 2) used the schooner Lady Amber, a small sailing research vessel, to deploy, service, maintain, and recover a variety of oceanographic and meteorological instruments in the eastern Pacific Ocean. Low operational costs allowed us to frequently deploy floats and drifters to collect data necessary for resolving the regional circulation of the eastern tropical Pacific. The small charter gave us the opportunity to deploy drifters in locations chosen according to current conditions, to recover and deploy various autonomous instruments in a targeted and adaptive manner, and to collect additional near-surface and atmospheric measurements in the remote SPURS-2 region. |
Capturing fresh layers with the surface salinity profiler Drushka, K., A.E. Asher, A.T. Jessup, E.J. Thompson, S. Iyer, and D. Clark, "Capturing fresh layers with the surface salinity profiler," Oceanography, 32, 76-85, doi:10.5670/oceanog.2019.215, 2019. |
More Info |
11 Jun 2019 |
|||||||
During the second Salinity Processes in the Upper-ocean Regional Study (SPURS-2) field experiments in 2016 and 2017 in the eastern tropical Pacific Ocean, the surface salinity profiler (SSP) measured temperature and salinity profiles in the upper 1.1 m of the ocean. The SSP captured the response of the ocean surface to 35 rain events, providing insight into the generation and evolution of rain-formed fresh layers. This paper describes the measurements made with the SSP during SPURS-2 and quantifies the fresh layers in terms of their vertical salinity gradients between 0.05 m and 1.1 m, ΔS1.1 - 0.05 m. For the 35 rain events sampled with the SSP in 2016 and 2017, the maximum value of ΔS1.1 - 0.05 m is well correlated with the accumulated rainfall. The maximum value of ΔS1.1 - 0.05 m is shown to be linearly proportional to the maximum rain rate and inversely proportional to the wind speed. This wind speed-dependent relationship shows a high degree of scatter, reflecting that the vertical salinity gradient formed during any individual rain event depends on the complex interaction between the local ocean dynamics and the highly variable forcing from rain and wind. |
Extension of the prognostic model of sea surface temperature to rain-induced cool and fresh lenses Bellenger, H., K. Drushka, W. Asher, G. Reverdin, M. Katsumata, and M. Watanabe, "Extension of the prognostic model of sea surface temperature to rain-induced cool and fresh lenses," J. Geophys. Res., 122, 484-507, doi:10.1002/2016JC012429, 2017. |
More Info |
1 Jan 2017 |
|||||||
The Zeng and Beljaars (2005) sea surface temperature prognostic scheme, developed to represent diurnal warming, is extended to represent rain-induced freshening and cooling. Effects of rain on salinity and temperature in the molecular skin layer (first few hundred micrometers) and the near-surface turbulent layer (first few meters) are separately parameterized by taking into account rain-induced fluxes of sensible heat and freshwater, surface stress, and mixing induced by droplets penetrating the water surface. Numerical results from this scheme are compared to observational data from two field studies of near-surface ocean stratifications caused by rain, to surface drifter observations and to previous computations with an idealized ocean mixed layer model, demonstrating that the scheme produces temperature variations consistent with in situ observations and model results. It reproduces the dependency of salinity on wind and rainfall rate and the lifetime of fresh lenses. In addition, the scheme reproduces the observed lag between temperature and salinity minimum at low wind speed and is sensitive to the peak rain rate for a given amount of rain. Finally, a first assessment of the impact of these fresh lenses on ocean surface variability is given for the near-equatorial western Pacific. In particular, the variability due to the mean rain-induced cooling is comparable to the variability due to the diurnal warming so that they both impact large-scale horizontal surface temperature gradients. The present parameterization can be used in a variety of models to study the impact of rain-induced fresh and cool lenses at different spatial and temporal scales. |
Satellite and in situ salinity: Understanding near-surface stratification and sub footprint variability Boutin, J., and 21 others, including W.E. Asher and K. Drushka, "Satellite and in situ salinity: Understanding near-surface stratification and sub footprint variability," Bull. Am. Meteor. Soc., 97, 1391-1407, doi:10.1175/BAMS-D-15-00032.1, 2016. |
More Info |
1 Aug 2016 |
|||||||
Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 x 100 km2. In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability. |
Impact of slowdown of Atlantic overturning circulation on heat and freshwater transports Kelly, K.A., K. Drushka, L. Thompson, D. Le Bars, and E.L. McDonagh, "Impact of slowdown of Atlantic overturning circulation on heat and freshwater transports," Geophys. Res. Lett., 43, 7625-7631, doi:10.1002/2016GL069789, 2016. |
More Info |
28 Jul 2016 |
|||||||
Recent measurements of the strength of the Atlantic overturning circulation at 26°N show a 1 year drop and partial recovery amid a gradual weakening. To examine the extent and impact of the slowdown on basin wide heat and freshwater transports for 20042012, a box model that assimilates hydrographic and satellite observations is used to estimate heat transport and freshwater convergence as residuals of the heat and freshwater budgets. Using an independent transport estimate, convergences are converted to transports, which show a high level of spatial coherence. The similarity between Atlantic heat transport and the Agulhas Leakage suggests that it is the source of the surface heat transport anomalies. The freshwater budget in the North Atlantic is dominated by a decrease in freshwater flux. The increasing salinity during the slowdown supports modeling studies that show that heat, not freshwater, drives trends in the overturning circulation in a warming climate. |
Intraseasonal variability of mixed layer depth in the tropical Indian Ocean Keerthi, M.G., and 7 others, including K. Drushka, "Intraseasonal variability of mixed layer depth in the tropical Indian Ocean," Clim. Dyn., 46, 2633-2655, doi:10.1007/s00382-015-2721-z, 2016. |
More Info |
1 Apr 2016 |
|||||||
In this paper, we use an observational dataset built from Argo in situ profiles to describe the main large-scale patterns of intraseasonal mixed layer depth (MLD) variations in the Indian Ocean. An eddy permitting (0.25°) regional ocean model that generally agrees well with those observed estimates is then used to investigate the mechanisms that drive MLD intraseasonal variations and to assess their potential impact on the related SST response. During summer, intraseasonal MLD variations in the Bay of Bengal and eastern equatorial Indian Ocean primarily respond to active/break convective phases of the summer monsoon. In the southern Arabian Sea, summer MLD variations are largely driven by seemingly-independent intraseasonal fluctuations of the Findlater jet intensity. During winter, the Madden–Julian Oscillation drives most of the intraseasonal MLD variability in the eastern equatorial Indian Ocean. Large winter MLD signals in northern Arabian Sea can, on the other hand, be related to advection of continental temperature anomalies from the northern end of the basin. In all the aforementioned regions, peak-to-peak MLD variations usually reach 10 m, but can exceed 20 m for the largest events. Buoyancy flux and wind stirring contribute to intraseasonal MLD fluctuations in roughly equal proportions, except for the Northern Arabian Sea in winter, where buoyancy fluxes dominate. A simple slab ocean analysis finally suggests that the impact of these MLD fluctuations on intraseasonal sea surface temperature variability is probably rather weak, because of the compensating effects of thermal capacity and sunlight penetration: a thin mixed-layer is more efficiently warmed at the surface by heat fluxes but loses more solar flux through its lower base. |
Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface Drushka, K., W.E. Asher, B. Ward, and K. Walesby, "Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface," J. Geophys. Res., 121, 2673-2689, doi:10.1002/2015JC011527, 2016. |
More Info |
1 Apr 2016 |
|||||||
Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is 0.04 psu when averaged over the 20°S20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds 0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses. |
Processes driving intraseasonal displacements of the eastern edge of the warm pool: The contribution of westerly wind events Drushka, K., H. Bellenger, E. Guilyardi, M. Lengaigne, J. Vialard, and G. Madec, "Processes driving intraseasonal displacements of the eastern edge of the warm pool: The contribution of westerly wind events," Clim. Dyn., 44, 735-755, doi:10.1007/s00382-014-2297-z, 2015. |
More Info |
1 Feb 2015 |
|||||||
We investigate the processes responsible for the intraseasonal displacements of the eastern edge of the western Pacific warm pool (WPEE), which appear to play a role in the onset and development of El Niño events. We use 25 years of output from an ocean general circulation model experiment that is able to accurately capture the observed displacements of the WPEE, sea level anomalies, and upper ocean zonal currents at intraseasonal time scales in the western and central Pacific Ocean. Our results confirm that WPEE displacements driven by westerly wind events (WWEs) are largely controlled by zonal advection. This paper has also two novel findings: first, the zonal current anomalies responsible for the WPEE advection are driven primarily by local wind stress anomalies and not by intraseasonal wind-forced Kelvin waves as has been shown in most previous studies. Second, we find that intraseasonal WPEE fluctuations that are not related to WWEs are generally caused by intraseasonal variations in net heat flux, in contrast to interannual WPEE displacements that are largely driven by zonal advection. This study hence raises an interesting question: can surface heat flux-induced zonal WPEE motions contribute to El Niño%uSouthern Oscillation evolution, as WWEs have been shown to be able to do? |
Defining Mediterranean and Black Sea biogeochemical subprovinces and synthetic ocean indicators using mesoscale oceanographic features Nieblas, A.-E., S. Bonhommeau, K. Drushka, G. Reygondeau, V. Rossi, Hervé Demarcq, and L. Dubroca, "Defining Mediterranean and Black Sea biogeochemical subprovinces and synthetic ocean indicators using mesoscale oceanographic features," Plos One, 9, doi:10.1371/journal.pone.0111251, 2014. |
More Info |
31 Oct 2014 |
|||||||
The Mediterranean and Black Seas are semi-enclosed basins characterized by high environmental variability and growing anthropogenic pressure. This has led to an increasing need for a bioregionalization of the oceanic environment at local and regional scales that can be used for managerial applications as a geographical reference. We aim to identify biogeochemical subprovinces within this domain, and develop synthetic indices of the key oceanographic dynamics of each subprovince to quantify baselines from which to assess variability and change. To do this, we compile a data set of 101 months (2002%u20132010) of a variety of both %u201Cclassical%u201D (i.e., sea surface temperature, surface chlorophyll-a, and bathymetry) and %u201Cmesoscale%u201D (i.e., eddy kinetic energy, finite-size Lyapunov exponents, and surface frontal gradients) ocean features that we use to characterize the surface ocean variability. We employ a k-means clustering algorithm to objectively define biogeochemical subprovinces based on classical features, and, for the first time, on mesoscale features, and on a combination of both classical and mesoscale features. Principal components analysis is then performed on the oceanographic variables to define integrative indices to monitor the environmental changes within each resultant subprovince at monthly resolutions. Using both the classical and mesoscale features, we find five biogeochemical subprovinces for the Mediterranean and Black Seas. Interestingly, the use of mesoscale variables contributes highly in the delineation of the open ocean. The first axis of the principal component analysis is explained primarily by classical ocean features and the second axis is explained by mesoscale features. Biogeochemical subprovinces identified by the present study can be useful within the European management framework as an objective geographical framework of the Mediterranean and Black Seas, and the synthetic ocean indicators developed here can be used to monitor variability and long-term change. |
The diurnal salinity cycle in the tropics Drushka, K., S.T. Gille, and J. Sprintall, "The diurnal salinity cycle in the tropics," J. Geophys. Res., 119, 5874-5890, doi:10.1002/2014JC009924, 2014. |
More Info |
1 Sep 2014 |
|||||||
Observations from 35 tropical moorings are used to characterize the diurnal cycle in salinity at 1 m depth. The amplitude of diurnal salinity anomalies is up to 0.01 psu and more typically ~0.005 psu. Diurnal variations in precipitation and vertical entrainment appear to be the dominant drivers of diurnal salinity variability, with evaporation also contributing. Areas where these processes are strong are expected to have relatively strong salinity cycles: the eastern Atlantic and Pacific equatorial regions, the southwestern Bay of Bengal, the Amazon outflow region, and the Indo-Pacific warm pool. We hypothesize that salinity anomalies resulting from precipitation and evaporation are initially trapped very near the surface and may not be observed at the 1 m instrument depths until they are mixed downward. As a result, the pattern of diurnal salinity variations is not only dependent on the strength of the forcing terms, but also on the phasing of winds and convective overturning. A comparison of mixed-layer depth computed with hourly and with daily averaged salinity reveals that diurnal salinity variability can have a significant effect on upper ocean stratification, suggesting that representing diurnal salinity variability could potentially improve air-sea interaction in climate models. Comparisons between salinity observations from moorings and from the Aquarius satellite (level 2 version 3.0 data) reveal that the typical difference between ascending-node and descending-node Aquarius salinity is an order of magnitude greater than the observed diurnal salinity anomalies at 1 m depth. |
In The News
Overcoming the challenges of ocean data uncertainty EOS Science News by AGU Kyla Drushka, with co-authors Shane Elipot, Aneeesh Subramanian, and Mike Patterson, write that in oceanography, as in any scientific field, the goal is not to eliminate uncertainty in data, but instead to better quantify and clearly communicate its size and nature. |
12 Jan 2022
|
Atlantic Ocean’s slowdown tied to changes in the Southern Hemisphere UW News and Information, Hannah Hickey The ocean circulation that is responsible for England’s mild climate appears to be slowing down. The shift is not sudden or dramatic, as in the 2004 sci-fi movie “The Day After Tomorrow,” but it is a real effect that has consequences for the climates of eastern North America and Western Europe. |
5 Oct 2016
|