APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Andrey Shcherbina

Principal Oceanographer

Affiliate Assistant Professor, Civil and Environmental Engineering

Email

ashcherbina@apl.washington.edu

Phone

206-897-1446

Department Affiliation

Ocean Physics

Education

M.S. Physical Oceanography, Moscow Institute of Physics and Technology, 1998

Ph.D. Physical Oceanography, Scripps Institution of Oceanography, 2004

Andrey Shcherbina's Website

http://faculty.washington.edu/shcher/

Projects

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

Lateral Mixing

Small scale eddies and internal waves in the ocean mix water masses laterally, as well as vertically. This multi-investigator project aims to study the physics of this mixing by combining dye dispersion studies with detailed measurements of the velocity, temperature and salinity field during field experiments in 2011 and 2012.

1 Sep 2012

APL-UW Involvement in the Coastal Margin Observation and Prediction Science and Technology Center (CMOP)

AUVs will be deployed by a newly formed APL-UW AUV group as part of CMOP's experimental observation network which consists of multiple fixed and mobile platforms equipped with oceanographic sensors.

More Info

15 Jun 2012

The Center for Coastal Margin Observation and Predication (CMOP) has purchased from Hydroid, LLC two Autonomous Underwater Vehicles (AUVs) for its studies. The REMUS (Remote Environmental Measuring Units) 100 (see Figure 1) is a compact, light-weight, AUV designed for operation in coastal environments up to 100 meters in depth. The AUVs will be deployed by a newly formed APL-UW AUV group as part of CMOP's experimental observation network which consists of multiple fixed and mobile platforms equipped with oceanographic sensors. The AUVs will be used, primarily, to study the Columbia River plume and estuary region. The AUVs will be deployed periodically throughout each operational year. We also plan to allow customization of the AUVs by integrating novel biogeochemical sensors to meet specific scientific objectives for the CMOP program.

More Projects

Publications

2000-present and while at APL-UW

Rapid downwelling of tracer particles across the boundary layer and into the pycnocline at submesoscale ocean fronts

Pham, H.T., V. Verma, S. Sarkar, A.Y. Shcherbina, and E.A. D'Asaro, "Rapid downwelling of tracer particles across the boundary layer and into the pycnocline at submesoscale ocean fronts," Geophys. Res. Lett., 51, doi:10.1029/2024GL109674, 2024.

More Info

16 Sep 2024

A neutrally buoyant float deployed in an atmospherically driven turbulent ocean boundary layer on the dense side of a submesoscale front was repeatedly carried across the boundary layer by the turbulence and then trapped beneath the slumping front. Lagrangian particles in a large-eddy simulation of a similar baroclinically unstable front forced by surface cooling move along convergent surface filaments toward filament junctions. They are also caught by convective plumes that downwell them at speeds similar to those of the float. Subsequently, some are trapped in the pycnocline by frontal slumping due to ageostrophic secondary frontal circulations. In both observations and simulations, boundary layer turbulence and frontal circulations work together to trap and subduct particles from the mixed layer. The small-scale boundary layer motions move them vertically within the boundary layer and larger, submesoscale frontal circulations move them laterally out of the boundary layer and under the slumping fronts.

Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea

Drushka, K., E. Westbrook, F.M. Bingham, P. Gaube, S. Dickinson, S. Fournier, V. Menezes, S. Misra, J.P. Valentin, E.J. Rainville, J.J. Schanze, C. Schmidgall, A. Shcherbina, M. Steele, J. Thomson, and S. Zippel, "Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea," Earth Syst. Sci. Data, 16, 4209-4242, doi:10.5194/essd-16-4209-2024, 2024.

More Info

16 Sep 2024

As our planet warms, Arctic sea ice coverage continues to decline, resulting in complex feedbacks with the climate system. The core objective of NASA's Salinity and Stratification at the Sea Ice Edge (SASSIE) mission is to understand how ocean salinity and near-surface stratification affect upper-ocean heat content and thus sea ice freeze and melt. SASSIE specifically focuses on the formation of Arctic Sea ice in autumn. The SASSIE field campaign in 2022 collected detailed observations of upper-ocean properties and meteorology near the sea ice edge in the Beaufort Sea using ship-based and piloted and drifting assets. The observations collected during SASSIE include vertical profiles of stratification up to the sea surface, air–sea fluxes, and ancillary measurements that are being used to better understand the role of salinity in coupled Arctic air–sea–ice processes. This publication provides a detailed overview of the activities during the 2022 SASSIE campaign and presents the publicly available datasets generated by this mission (available at https://podaac.jpl.nasa.gov/SASSIE, last access: 29 May 2024; DOIs for individual datasets in the "Data availability" section), introducing an accompanying repository that highlights the numerical routines used to generate the figures shown in this work.

Saptiotemporal variability of rainfall and surface salinity in the Eastern Pacific Fresh Pool: A joint in situ and satellite analysis during the SPURS-2 field campaign

Chi, N.-H., E.J. Thompson, H.A. Chen, A. Shcherbina, F. Bingham, and L. Rainville, "Saptiotemporal variability of rainfall and surface salinity in the Eastern Pacific Fresh Pool: A joint in situ and satellite analysis during the SPURS-2 field campaign," J. Geophys. Res., 128, doi:10.1029/2022JC019599, 2023.

More Info

13 Dec 2023

We perform a statistical characterization of the 2016–2017 SPURS-2 field campaign in situ data and coincident satellite data spanning 8°–12°N, 120°–130°W to quantify the spatial and temporal scales of variability of rain and near-surface salinity in the Eastern Pacific Fresh Pool. Observations of rain rate and near-surface to surface salinity are obtained from ships, moorings, autonomous platforms, and satellite remote sensing: Integrated Multi-satellitE Retrievals for GPM (IMERG); and Soil Moisture Active Passive (NASA SMAP L3 V5). The integral length and time scales of rain and near-surface salinity vary seasonally. In the rainy season (August–October) when the Intertropical Convergence Zone (ITCZ) migrates over the SPURS-2 study site, the integral time scales of rain were about 30–60 min and those of near-surface salinity were closer to that of the rain, 1–2 days, indicating forcing by rain. Meanwhile, the zonal integral length scale of in situ near-surface salinity was twice as large as the meridional scale (50 vs. 20 km), consistent with the ITCZ's zonally-propagating and -organized rain features. The magnitude and seasonal variation of the sea surface salinity integral time scale were not captured by SMAP since the rainy ITCZ-period scales were smaller than SMAP resolution (70 km, 8-day running mean). In the dry season (February–May), the in situ rain integral time scale reduced to less than 30 min while that of the near-surface salinity increased to 1–5 days, the ocean mesoscale. IMERG overestimated the rain integral time scale by a factor of two to ten in both seasons.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close