APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Rusty Starr

Research Manager

Email

fstarr@u.washington.edu

Phone

206-543-7875

Biosketch

Mr. Starr's early research experience started with the birth of interventional radiology at Johns Hopkins University and Medical Center. He was involved in investigations of vascular clotting materials with an emphasis on hemostasis of hemorrhaging trauma and bleeding due to vascular anomalies and disease. During these studies he helped develop the Becton Dickenson mini-detachable vascular balloon system used to block bleeding vessels and to ablate tumor vascular supply. Other areas of research involved tumor models and super selective catheterization of tumor feeding arteries for the direct delivery of chemotherapeutic agents, and drug and physiology studies utilizing radiographic imaging and vascular catheterization techniques.

Research at the UW continued along the same lines as those at Hopkins, but also expanded to include other imaging modalities such as ultrasound, magnetic resonance imaging (MRI), and computerized axial tomography (CAT). He joined the APL-UW CIMU research group in 2001 and continues hemostasis research.

Publications

2000-present and while at APL-UW

An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model

Wang, Y.-N., W. Kreider, C. Hunter, B.W. Cunitz, J. Thiel, F. Starr, J.C. Dai, Y. Nazari, D. Lee, J.C. Williams, M.R. Bailey, and A.D. Maxwell, "An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model," Proc. Mtgs. Acoust., 35, 02009, doi:10.1121/2.0000975, 2018.

More Info

5 Nov 2018

Proceedings, 176th Meeting of the Acoustical Society of America, 5-9 November 2018, Victoria, BC, Canada.

Burst wave lithotripsy (BWL) is a new non-invasive method for stone comminution using bursts of sub-megahertz ultrasound. A porcine model of urolithiasis and techniques to implement BWL treatment has been developed to evaluate its effectiveness and acute safety. Six human calcium oxalate monohydrate stones (6–7 mm) were hydrated, weighed, and surgically implanted into the kidneys of three pigs. Transcutaneous stone treatments were performed with a BWL transducer coupled to the skin via an external water bath. Stone targeting and treatment monitoring were performed with a co-aligned ultrasound imaging probe. Treatment exposures were applied in three 10-minute intervals for each stone. If sustained cavitation in the parenchyma was observed by ultrasound imaging feedback, treatment was paused and the pressure amplitude was decreased for the remaining time. Peak negative focal pressures between 6.5 and 7 MPa were applied for all treatments. After treatment, stone fragments were removed from the kidneys. At least 50% of each stone was reduced to <2 mm fragments. 100% of four stones were reduced to <4 mm fragments. Magnetic resonance imaging showed minimal injury to the functional renal volume. This study demonstrated that BWL could be used to effectively fragment kidney stones with minimal injury.

Effect of carbon dioxide on the twinkling artifact in ultrasound imaging of kidney stones: A pilot study

Simon, J.C., Y.-N. Wang, B.W. Cunitz, J. Thiel, F. Starr, Z. Liu, and M.R. Bailey, "Effect of carbon dioxide on the twinkling artifact in ultrasound imaging of kidney stones: A pilot study," Ultrasound Med. Biol. 43, 877-883, doi:10.1016/j.ultrasmedbio.2016.12.010, 2017.

More Info

1 May 2017

Bone demineralization, dehydration and stasis put astronauts at increased risk of forming kidney stones in space. The color-Doppler ultrasound "twinkling artifact," which highlights kidney stones with color, can make stones readily detectable with ultrasound; however, our previous results suggest twinkling is caused by microbubbles on the stone surface which could be affected by the elevated levels of carbon dioxide found on space vehicles. Four pigs were implanted with kidney stones and imaged with ultrasound while the anesthetic carrier gas oscillated between oxygen and air containing 0.8% carbon dioxide. On exposure of the pigs to 0.8% carbon dioxide, twinkling was significantly reduced after 9–25 min and recovered when the carrier gas returned to oxygen. These trends repeated when pigs were again exposed to 0.8% carbon dioxide followed by oxygen. The reduction of twinkling caused by exposure to elevated carbon dioxide may make kidney stone detection with twinkling difficult in current space vehicles.

Release of cell-free microRNA biomarkers into the blood circulation with pulsed focused ultrasound: A noninvasive, anatomically localized, molecular liquid biopsy

Chevillet, J.R., and 9 others, including F. Starr and Y.-N. Wang, "Release of cell-free microRNA biomarkers into the blood circulation with pulsed focused ultrasound: A noninvasive, anatomically localized, molecular liquid biopsy," Radiology, 283, 158-167, doi:10.1148/radiol.2016160024, 2017.

More Info

1 Apr 2017

Purpose
To compare the abilities of three pulsed focused ultrasound regimes (that cause tissue liquefaction, permeabilization, or mild heating) to release tumor-derived microRNA into the circulation in vivo and to evaluate release dynamics.

Materials and Methods
All rat experiments were approved by the University of Washington Institutional Animal Care and Use Committee. Reverse-transcription quantitative polymerase chain reaction array profiling was used to identify candidate microRNA biomarkers in a rat solid tumor cell line. Rats subcutaneously grafted with these cells were randomly assigned among three pulsed focused ultrasound treatment groups: (a) local tissue liquefaction via boiling histotripsy, (b) tissue permeabilization via inertial cavitation, and (c) mild (<10°C) heating of tissue, as well as a sham-treated control group. Blood specimens were drawn immediately prior to treatment and serially over 24 hours afterward. Plasma microRNA was quantified with reverse-transcription quantitative polymerase chain reaction, and statistical significance was determined with one-way analysis of variance (Kruskal-Wallis and Friedman tests), followed by the Dunn multiple-comparisons test.

Results
After tissue liquefaction and cavitation treatments (but not mild heating), plasma quantities of candidate biomarkers increased significantly (P value range, <.0001 to .04) relative to sham-treated controls. A threefold to 32-fold increase occurred within 15 minutes after initiation of pulsed focused ultrasound tumor treatment, and these increases persisted for 3 hours. Histologic examination confirmed complete liquefaction of the targeted tumor area with boiling histotripsy, in addition to areas of petechial hemorrhage and tissue disruption by means of cavitation-based treatment.

Conclusion
Mechanical tumor tissue disruption with pulsed focused ultrasound–induced bubble activity significantly increases the plasma abundance of tumor-derived microRNA rapidly after treatment.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close