APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Mike Steele

Senior Principal Oceanographer

Email

mas@apl.washington.edu

Phone

206-543-6586

Biosketch

Dr. Steele is interested in the large-scale circulation of sea ice and water in the Arctic Ocean. He uses both observed data and numerical model simulations to better understand the average circulation pathways as well as the causes of interannual variations in these pathways. Analysis of ocean observations has focused on the upper layers, which are generally quite cold and fresh.

Dr. Steele has active field programs in which data are collected in the field by his team and others, using aircraft, ships, and autonomous sensors like buoys and profiling floats. He is also involved with efforts to improve computer models of the arctic marine system, via the Arctic Ocean Model Intercomparison Project, AOMIP.

Funding for his research comes from the National Science Foundation, NASA, and the National Oceanic and Atmospheric Agency (NOAA). He is involved with many outreach programs such as lectures to K-12 and college students. Mike Steele began work at the Polar Science Center in 1987.

Department Affiliation

Polar Science Center

Education

B.A. Physics, Reed College, 1981

Ph.D. Geophysical Fluid Dynamics, Princeton University, 1987

Projects

North Pole Environmental Observatory

The observatory is staffed by an international research team that establishes a camp at the North Pole each spring to take the pulse of the Arctic Ocean and learn how the world's northernmost sea helps regulate global climate.

 

Producing an Updated Synthesis of the Arctic's Marine Primary Production Regime and its Controls

The focus of this project is to synthesize existing studies and data relating to Arctic Ocean primary production and its changing physical controls such as light, nutrients, and stratification, and to use this synthesis to better understand how primary production varies in time and space and as a function of climate change.

 

A Modular Approach to Building an Arctic Observing System for the IPY and Beyond in the Switchyard Region of the Arctic Ocean

This project will provided for the design, development, and implementation of a component of an Arctic Ocean Observing System in the Switchyard region of the Arctic Ocean (north of Greenland and Nares Strait) that will serve the scientific studies developed for the IPY (International Polar Year), SEARCH (Study of Environmental ARctic Change), and related programs. Specifically, the project will continue and expand two aircraft-based sections between Alert and the North Pole for long-term observation of hydrographic properties and a set of tracers aimed at resolving relative age structure and freshwater components in the upper water column.

 

More Projects

Videos

Polar Science Weekend @ Pacific Science Center

This annual event at the Pacific Science Center shares polar science with thousands of visitors. APL-UW researchers inspire appreciation and interest in polar science through dozens of live demonstrations and hands-on activities.

More Info

10 Mar 2017

Polar research and technology were presented to thousands of visitors by APL-UW staff during the Polar Science Weekend at Seattle's Pacific Science Center. The goal of is to inspire an appreciation and interest in science through one-on-one, face-to-face interactions between visitors and scientists. Guided by their 'polar passports', over 10,000 visitors learned about the Greenland ice sheet, the diving behavior of narwhals, the difference between sea ice and freshwater ice, how Seagliders work, and much more as they visited dozens of live demonstrations and activities.

The Polar Science Weekend has grown from an annual outreach event to an educational research project funded by NASA, and has become a model for similar activities hosted by the Pacific Science Center. A new program trains scientists and volunteers how to interact with the public and how to design engaging exhibits.

Arctic Sea Ice Extent and Volume Dip to New Lows

By mid-September, the sea ice extent in the Arctic reached the lowest level recorded since 1979 when satellite mapping began.

More Info

15 Oct 2012

APL-UW polar oceanographers and climatologists are probing the complex ice–ocean–atmosphere system through in situ and remote sensing observations and numerical model simulations to learn how and why.

Changing Freshwater Pathways in the Arctic Ocean

Freshening in the Canada Basin of the Arctic Ocean began in the 1990s. Polar scientist Jamie Morison and colleagues report new insights on the freshening based in part on Arctic-wide views from two satellite system.

More Info

5 Jan 2012

The Arctic Ocean is a repository for a tremendous amount of river runoff, especially from several huge Russian rivers. During the spring of 2008, APL-UW oceanographers on a hydrographic survey in the Arctic detected major shifts in the amount and distribution of fresh water. The Canada basin had freshened, but had the entire Arctic Ocean?

Analysis of satellite records shows that salinity increased on the Russian side of the Arctic and decreased in the Beaufort Sea on the Canadian side. With an Arctic-wide view of circulation from satellite sensors, researchers were able to determine that atmospheric forcing had shifted the transpolar drift counterclockwise and driven Russian runoff east to the Canada Basin.

More Videos

Publications

2000-present and while at APL-UW

Temporal means and variability of Arctic sea ice melt and freeze season climate indicators using a satellite climate data record

Peng, G., M. Steele, A.C. Bliss, W.N. Meier, and S. Dickinson, "Temporal means and variability of Arctic sea ice melt and freeze season climate indicators using a satellite climate data record," Remote Sens., 10, 1328, doi:10.3390/rs10091328, 2018.

More Info

21 Aug 2018

Information on the timing of Arctic snow and ice melt onset, sea ice opening, retreat, advance, and closing, can be beneficial to a variety of stakeholders. Sea ice modelers can use information on the evolution of the ice cover through the rest of the summer to improve their seasonal sea ice forecasts. The length of the open water season (as derived from retreat/advance dates) is important for human activities and for wildlife. Long-term averages and variability of these dates as climate indicators are beneficial to business strategic planning and climate monitoring. In this study, basic characteristics of temporal means and variability of Arctic sea ice climate indicators derived from a satellite-based climate data record from March 1979 to February 2017 melt and freeze seasons are described. Our results show that, over the Arctic region, anomalies of snow and ice melt onset, ice opening and retreat dates are getting earlier in the year at a rate of more than 5 days per decade, while that of ice advance and closing dates are getting later at a rate of more than 5 days per decade. These significant trends resulted in significant upward trends for anomalies of inner and outer ice-free periods at a rate of nearly 12 days per decade. Small but significant downward trends of seasonal ice loss and gain period anomalies were also observed at a rate of –1.48 and –0.53 days per decade, respectively. Our analyses also demonstrated that the means of these indicators and their trends are sensitive to valid data masks and regional averaging methods.

Light availability and phytoplankton growth beneath arctic sea ice: Integrating observations and modeling

Hill, V.J., B. Light, M. Steele, and R.C. Zimmerman, "Light availability and phytoplankton growth beneath arctic sea ice: Integrating observations and modeling," J. Geophys. Res., 123, 3651-3667, doi:10.1029/2017JC013617, 2018.

More Info

1 May 2018

Observations of the seasonal light field in the upper Arctic Ocean are critical to understanding the impacts of changing Arctic ice conditions on phytoplankton growth in the water column. Here we discuss data from a new sensor system, deployed in seasonal ice cover north‐east of Utqiagvik, Alaska in March 2014. The system was designed to provide observations of light and phytoplankton biomass in the water column during the formation of surface melt ponds and the transition from ice to open water. Hourly observations of downwelling irradiance beneath the ice (at 2.9, 6.9, and 17.9 m depths) and phytoplankton biomass (at 2.9 m depth) were transmitted via Iridium satellite from 9 March to 10 November 2014. Evidence of an under‐ice phytoplankton bloom (Chl a ∼8 mg m-3) was seen in June and July. Increases in light intensity observed by the buoy likely resulted from the loss of snow cover and development of surface melt ponds. A bio‐optical model of phytoplankton production supported this probable trigger for the rapid onset of under‐ice phytoplankton growth. Once under‐ice light was no longer a limiting factor for photosynthesis, open water exposure almost marginally increased daily phytoplankton production compared to populations that remained under the adjacent ice. As strong effects of climate change continue to be documented in the Arctic, the insight derived from autonomous buoys will play an increasing role in understanding the dynamics of primary productivity where ice and cloud cover limit the utility of ocean color satellite observations.

Collapse of the 2017 winter Beaufort high: A response to thinning sea ice?

Moore, G.W.K., A. Schweiger, J. Zhang, and M. Steele, "Collapse of the 2017 winter Beaufort high: A response to thinning sea ice?," Geophys. Res. Lett., 45, 2860-2869, doi:10.1002/2017GL076446, 2018.

More Info

28 Mar 2018

The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi‐stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low‐pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2‐sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

More Publications

In The News

Seattle climate scientists spread word on warming, skip politics

The Seattle Times, Jerry Large

Climate scientists at the University of Washington want to talk more about their work because it and public policy are intertwined. They stick to the science side of the equation, which they want the rest of us to understand better so that we can make informed decisions about climate change.

12 Jan 2017

Cyclone did not cause 2012 record low for Arctic sea ice

UW News and Information, Hannah Hickey

"The Great Arctic Cyclone of August 2012," is thought by some to have led to the historic sea ice minimum reached in mid-September 2013. UW research suggests otherwise.

31 Jan 2013

Study finds arctic cyclone had insignificant impact on 2012 ice retreat

The New York Times, Andrew C. Revkin

A new modeling study by the Applied Physics Laboratory at the University of Washington, replaying last summer%u2019s Arctic Ocean ice conditions with and without the storm, shows that the short-term influence of all that ice churning probably played almost no role in the final ice retreat in September.

31 Jan 2013

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close