APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jan Newton

Senior Principal Oceanographer

Affiliate Assistant Professor, Oceanography

Email

janewton@uw.edu

Phone

206-543-9152

Biosketch

Dr. Jan Newton is a Principal Oceanographer with the Applied Physics Laboratory of the University of Washington and affiliate faculty with the UW School of Oceanography and the School of Marine and Environmental Affairs, both in the UW College of the Environment. She is the Executive Director of the Northwest Association of Networked Ocean Observing Systems (NANOOS), the US IOOS Regional Association for the Pacific Northwest.

Jan is a biological oceanographer who has studied the physical, chemical, and biological dynamics of Puget Sound and coastal Washington, including understanding effects from climate and humans on water properties. Currently she has been working with colleagues at UW and NOAA to assess the status of ocean acidification in our local waters.

Department Affiliation

Ocean Physics

Education

B.S. Biology, Western Washington University, 1981

M.S. Oceanography, University of Washington - Seattle, 1984

Ph.D. Oceanography, University of Washington - Seattle, 1989

Projects

Washington Real-time Coastal Moorings (NEMO)

The Northwest Enhanced Moored Observatory (NEMO), which consists of a heavily-instrumented real-time surface mooring (Cha Ba), a real-time subsurface profiling mooring (NEMO-Subsurface) and a Seaglider to collect spatial information, aims to improve our understanding of complex physical, chemical and biological processes on the largely unsampled Washington shelf.

27 Sep 2011

NVS: NANOOS Visualization System

The NANOOS Visualization System (NVS) is your tool for easy access to data. NVS gathers data across a wide range of assets such as buoys, shore stations, and coastal land-based stations. Never before available downloads and visualizations are provided in a consistent format. You can access plots and data for almost all in-situ assets for the previous 30-day period.

2 Nov 2009

NANOOS: Northwest Association of Networked Ocean Observing Systems

This Pacific Northwest regional association is a partnership of information producers and users allied to manage coastal ocean observing systems for the benefit of stakeholders and the public. NANOOS is creating customized information and tools for Washington, Oregon, and Northern California.

1 Jan 2004

More Projects

Videos

Environmental Sample Processor: A Sentry for Toxic Algal Blooms off the Washington Coast

An undersea robot that measures harmful algal species has been deployed by APL, UW, and NOAA researchers off the Washington coast near La Push. Algal bloom toxicity data are relayed to shore in near-real time and displayed through the NANOOS visualization system. The Environmental Sample Processor, or ESP, is taking measurements near the Juan de Fuca eddy, which is a known incubation site for toxic blooms that often travel toward coastal beaches, threatening fisheries and human health.

22 Jun 2016

ORCA Tracks the 'Blob'

A 'blob' of very warm surface water developed in the northeastern Pacific Ocean in 2014–2015 and its influence extended to the inland waters of Puget Sound throughout the summer of 2015. The unprecedented conditions were tracked by the ORCA (Oceanic Remote Chemical Analyzer) buoy network — an array of six heavily instrumented moored buoys in the Sound. ORCA data provided constant monitoring of evolving conditions and allowed scientists to warn of possible fish kill events in the oxygen-starved waters of Hood Canal well in advance.

The ORCA network is maintained by a partnership among APL-UW, the UW College of the Environment, and the UW School of Oceanography.

3 Nov 2015

NEMO Deployment off the Washington Coast 2015

NEMO is the Northwest Enhanced Moored Observatory. The two advanced moorings located in water about 100 m deep off the Washington coast and a repeating Seaglider transect over the continental shelf have been collecting atmospheric and oceanographic data for over five years.

More Info

15 Jul 2015

In 2015 pH/CO2 sensors were placed on the moorning line. NOAA and other research teams have been measuring pCO2 and pH at the sea surface, but this is the first placement of sensors at depth in the region. These new data streams will increase the perspective of real time monitoring and inform ongoing research on ocean acidification.

More Videos

Publications

2000-present and while at APL-UW

Coastal mooring observing networks and their data products: Recommendations for the next decade

Bailey, K., and 9 other including J. Newton, "Coastal mooring observing networks and their data products: Recommendations for the next decade," Front. Mar. Sci., EOR, doi:10.3389/fmars.2019.00180, 2019.

More Info

5 Apr 2019

Instrumented moorings (hereafter referred to as moorings), which are anchored buoys or an anchored configuration of instruments suspended in the water column, are highly valued for their ability to host a variety of interchangeable oceanographic and meteorological sensors. This flexibility makes them a useful technology for meeting end user and science-driven requirements. Overall, societal needs related to human health, safety, national security, and economic prosperity in coastal areas are met through the availability of continuous data from coastal moorings and other complementary observing platforms within the Earth-observing system. These data streams strengthen the quality and accuracy of data products that inform the marine transportation industry, the tourism industry, fisheries, the military, public health officials, coastal and emergency managers, educators, and research scientists, among many others. Therefore, it is critical to sustain existing observing system networks, especially during this time of extreme environmental variability and change. Existing fiscal and operational challenges affecting the sustainability of observing networks will likely continue into the next decade, threatening the quality of downstream data and information products – especially those used for long-term monitoring, planning, and decision-making. This paper describes the utility of coastal moorings as part of an integrated coastal observing system, with an emphasis on stakeholder engagement to inform observing requirements and to ensure data products are tailored to user needs. We provide 10 recommendations for optimizing moorings networks, and thus downstream data products, to guide regional planners, and network operators:

1. Develop strategies to increase investment in coastal mooring networks
2. Collect stakeholder priorities through targeted and continuous stakeholder engagements
3. Include complementary systems and emerging technologies in implementation planning activities
4. Expand and sustain water column ecosystem moorings in coastal locations
5. Coordinate with operators and data managers across geographic scales
6. Standardize and integrate data management best practices
7. Provide open access to data
8. Promote environmental health and operational safety stewardship and regulatory compliance
9. Develop coastal mooring observing network performance metrics
10. Routinely monitor and assess the design of coastal mooring networks

Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends

Sutton, A.J., and 30 others including J.A. Newton, "Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends," Earth Syst. Sci. Data, 11, 421-439, doi:10.5194/essd-11-421-2019, 2019.

More Info

26 Mar 2019

Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr-1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions.

Vertical distributions and abundances of life stages of the euphausiid Euphausia pacifica in relation to oxygen and temperature in a seasonally hypoxic fjord

Li, L., J.E. Keister, T.E. Essignton, and J. Newton, "Vertical distributions and abundances of life stages of the euphausiid Euphausia pacifica in relation to oxygen and temperature in a seasonally hypoxic fjord," J. Plankton Res., 41, 188-202, doi:10.1093/plankt/fbz009, 2019.

More Info

1 Mar 2019

It is broadly assumed that organisms inhabiting seasonally hypoxic estuaries and fjords are stressed by low dissolved oxygen (DO) conditions. However, relatively few zooplankton have shown clear avoidance of hypoxic water except when oxygen was extremely low. We investigated vertical distributions and abundance of the euphausiid Euphausia pacifica in the seasonally hypoxic Hood Canal, Washington using depth-stratified zooplankton net tows and CTD casts, monthly from June to October in 2012 and 2013 at two sites that contrasted in oxygen conditions. We separated E. pacifica into five life stages based on their ontogenetic development and swimming ability and related their density (#/m3) within each depth layer to the corresponding environmental variables using delta Generalized Linear Mixed Models (GLMMs). The models detected strong seasonal and spatial differences with no additional significant effects of DO or temperature. GLMMs showed that whole water-column abundances of calyptopes and furcilia I–III stages were more strongly related to DO and temperature than other stages. Overall, only modest effects of DO were observed, possibly because of the low temperatures and moderate DO levels compared to recent years. Combined laboratory experiments and multi-year mooring data show that conditions in other years could have resulted in direct mortality.

More Publications

In The News

The ocean absorbs billions of tons of carbon every year, and the process is accelerating, study shows

Seattle Times, Evan Bush

Newly published research analyzed more than 100,000 seawater samples worldwide and found the oceans are absorbing about 31 percent of human-caused carbon emissions. It’s “a huge service the oceans are doing,” says a co-author, in Seattle.

14 Mar 2019

Could this tool save Washington's shellfish?

Crosscut, Hannah Weinberger

Researchers at the University of Washington have invented a computer model, LiveOcean, that each day compiles a vast array of ecosystemic data — currents, salinity, temperature, chemical concentrations, organic particles and more — to create a three-dimensional, 72-hour forecast for the undersea weather of the Pacific Northwest.

20 Feb 2019

New UW computer program forecasts underwater conditions

KING 5 News, Alison Morrow

We're used to checking the weather forecast, but now we can also check the forecast underwater in Puget Sound and around the coast.

7 Feb 2019

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close