Campus Map

Benjamin Smith

Principal Physicist

Affiliate Associate Professor, Earth and Space Sciences





Department Affiliation

Polar Science Center


2000-present and while at APL-UW

GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

Shean, D.E., K. Christianson, K.M. Larson, S.R.M. Ligtenberg, I.R. Joughin, B.E. Smith, C.M. Stevens, M. Bushuk, and D.M. Holland, "GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica," Cryosphere, 11, 2655-2674, doi:10.5194/tc-11-2655-2017, 2017.

More Info

21 Nov 2017

In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008–2010 and 2012–2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf∕ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf – zsurf0′) is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt  ~0.2–0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf∕ Dt trends (–1 to –4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from  ~10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012–2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice–ocean interaction at PIG.

Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice melange in northwest Greenland

Moon, T., I, Joughin, and B. Smith, "Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice melange in northwest Greenland," J. Geophys. Res., 120, 818-833, doi:10.1002/2015JF003494, 2015.

More Info

13 May 2015

Glacier ice discharge, which depends on ice velocity and terminus fluctuations, is a primary component of Greenland Ice Sheet mass loss. Some research suggests that ice melange influences terminus calving, in turn affecting glacier velocity. The details and broad spatiotemporal consistency of these relationships, however, is undetermined. Focusing on 16 northwestern Greenland glaciers during 2009 through summer 2014, we examined seasonal surface velocity changes, glacier terminus position, and sea ice and ice melange conditions. For a longer-term analysis, we also produced extended records of four glaciers from 1999 to 2014. There is a strong correspondence between seasonal near-terminus sea ice/melange conditions and terminus change, with rigid ice melange conditions associated with advance and open water associated with retreat. Extended sea ice-free periods and reduced rigid melange are also linked with anomalously large terminus retreat. In all but one case, sustained multiyear retreat of greater than 1 km during both the 15-year and 6-year records was accompanied by interannual velocity increases. Seasonal velocity patterns, however, correspond more strongly with runoff changes than terminus behavior. Projections of continued warming and longer sea ice-free periods around Greenland indicate that notable retreat over wide areas may continue. This sustained retreat likely will contribute to multiyear speedup. Longer melt seasons and earlier breakup of melange may also alter the timing of seasonal ice flow variability.

Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica

Joughin, I., B.E. Smith, and B. Medley, "Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica," Science, 344, 735-738, doi: 10.1126/science.1249055, 2014

More Info

16 May 2014

Resting atop a deep marine basin, the West Antarctic Ice Sheet has long been considered prone to instability. Using a numerical model, we investigate the sensitivity of Thwaites Glacier to ocean melt and whether unstable retreat is already underway. Our model reproduces observed losses when forced with ocean melt comparable to estimates. Simulated losses are moderate (<0.25 mm per year sea level) over the 21st Century, but generally increase thereafter. Except possibly for the lowest-melt scenario, the simulations indicate early-stage collapse has begun. Less certain is the timescale, with onset of rapid (> 1 mm per year of sea-level rise) collapse for the different simulations within the range of two to nine centuries.

More Publications

In The News

NASA's IceSat space laser makes height maps of Earth

BBC News, Jonathan Amos

One of the most powerful Earth observation tools ever put in orbit is now gathering data about the planet. The great advantage of the new laser system is that it can detect behaviour in areas that have been beyond the vision of previous satellites. "We're resolving every valley in the mountains," said team-member Ben Smith.

11 Dec 2018

Scary warming at poles showing up at weird times, places

The New York Times

Scientists are seeing surprising melting in Earth's polar regions at times they don't expect, like winter, and in places they don't expect, like eastern Antarctica. NASA's newest space-based radar, Icesat 2, in its first couple of months has already found that the Dotson ice shelf in Antarctica has lost more than 390 feet (120 meters) in thickness since 2003, said radar scientist Ben Smith.

11 Dec 2018

UW polar scientists advised NASA on upcoming ICESat-2 satellite

UW News, Hannah Hickey

NASA plans to launch a new satellite this month that will measure elevation changes on Earth with unprecedented detail. Once in the air, it will track shifts in the height of polar ice, mountain glaciers and even forest cover around the planet. Two University of Washington polar scientists are advising the ICESat-2 mission, provided expertise on the massive glaciers covering Antarctica and Greenland, and sea surface height in the Arctic and other oceans.

10 Sep 2018

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center