APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Vera Khokhlova

Senior Principal Engineer

Email

vera@apl.washington.edu

Phone

206-221-6585

Videos

Characterizing Medical Ultrasound Sources and Fields

For every medical ultrasound transducer it's important to characterize the field it creates, whether for safety of imaging or efficacy of therapy. CIMU researchers measure a 2D acoustic pressure distribution in the beam emanating from the source transducer and then reconstruct mathematically the exact field on the surface of the transducer and in the entire 3D space.

11 Sep 2017

Mechanical Tissue Ablation with Focused Ultrasound

An experimental noninvasive surgery method uses nonlinear ultrasound pulses to liquefy tissue at remote target sites within a small focal region without damaging intervening tissues.

More Info

23 Mar 2017

Boiling histotripsy utilizes sequences of millisecond-duration HIFU pulses with high-amplitude shocks that form at the focus by nonlinear propagation effects. Due to strong attenuation of the ultrasound energy at the shocks, these nonlinear waves rapidly heat tissue and generate millimeter-sized boiling bubbles at the focus within each pulse. Then the further interaction of subsequent shocks with the vapor cavity causes tissue disintegration into subcellular debris through the acoustic atomization mechanism.

The method was proposed at APL-UW in collaboration with Moscow State University (Russia) and now is being evaluated for various clinical applications. It has particular promise because of its important clinical advantages: the treatment of tissue volumes can be accelerated while sparing adjacent structures and not injuring intervening tissues; it generates precisely controlled mechanical lesions with sharp margins; the method can be implemented in existing clinical systems; and it can be used with real-time ultrasound imaging for targeting, guidance, and evaluation of outcomes. In addition, compared to thermal ablation, BH may lead to faster resorption of the liquefied lesion contents.

Publications

2000-present and while at APL-UW

Method for designing multi-element fully populated random phased arrays for ultrasound surgery applications

Rosnitskiy, P.B., B.A. Vysrokanov, L.R. Gavrilov, O.A. Sapozhnikov, and V.A. Khokhlova, "Method for designing multi-element fully populated random phased arrays for ultrasound surgery applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 630-637, doi:10.1109/TUFFC.2018.2800160, 2018.

More Info

1 Apr 2018

Maximizing the power of multi-element phased arrays is a critical factor for high intensity focused ultrasound (HIFU) applications such as histotripsy and transcostal sonications. This can be achieved by a tight packing of the array elements. Good electronic focusing capabilities are also required. Currently used quasi-random arrays with a relatively low filling factor of about 60% have this focusing ability. Here, a novel method of designing random HIFU arrays with the maximum possible filling factor (100% if no gaps between elements needed in practice are introduced) and polygonal elements of equal area and slightly different shape based on the capacity-constrained tessellation is described. The method is validated by comparing designs of two arrays with the same geometric and physical parameters: an existing 256-element array with a compact 16-spirals layout of circular elements and the proposed array with the maximum possible filling factor. Introduction of a 0.5 mm gap between the elements of the new array resulted in a reduction of its filling factor to 86% as compared with 61% for the spiral array. It is shown that for the same intensity at the elements, the proposed array provides two times higher total power while maintaining the same electronic focusing capabilities as compared to the spiral one. Furthermore, the surface of the capacity-constrained tessellation array, its boundary, and a central opening can have arbitrary shapes.

Design and characterization of a 2-dimensional focused 1.5-MHz ultrasound array with a compact spiral arrangement of 256 circular elements

Sapozhnikov, O., M. Ghanem, A. Maxwell, P. Rosnitskiy, P. Yuldashev, W. Kreider, B. Cunitz, M. Bailey, and V. Khokhlova, "Design and characterization of a 2-dimensional focused 1.5-MHz ultrasound array with a compact spiral arrangement of 256 circular elements," Proc., IEEE International Ultrasonics Symposium, 6-9 September, Washington, D.C., doi:10.1109/ULTSYM.2017.8092165 (IEEE, 2017).

More Info

2 Nov 2017

Multi-element ultrasound arrays are increasingly used in clinical practice for both imaging and therapy. In therapy, they allow electronic steering, aberration correction, and focusing. To avoid grating lobes, an important requirement for such an array is the absence of periodicity in the arrangement of the elements. A convenient solution is the arrangement of the elements along spirals. The objective of this work was to design, fabricate, and characterize an array for boiling histotripsy applications that is capable of generating shock waves in the focus of up to 100 MPa peak pressure while having a reasonable electronic steering range.

Design and characterization of a research phantom for shock-wave enhanced irradiations in high intensity focused ultrasound therapy

Kreider, W., B. Dunmire, J. Kucewicz, C. Hunter, T. Khokhlova, G. Schade, A. Maxwell, O. Sapozhnikov, L. Crum, and V. Khokhlova, "Design and characterization of a research phantom for shock-wave enhanced irradiations in high intensity focused ultrasound therapy," Proc., IEEE International Ultrasonics Symposium, 6-9 September, Washington, D.C., doi:10.1109/ULTSYM.2017.8092866 (IEEE, 2017).

More Info

2 Nov 2017

The use of shock waves for enhancing thermal effects and mechanically ablating tissue is gaining increased attention in high intensity focused ultrasound (HIFU) applications such as tumor treatment, drug delivery, noninvasive biopsy, and immunotherapy. For abdominal targets, the presence of ribs and inhomogeneous adipose tissue can affect shock formation through aberration, absorption, and diffraction. The goal of this study was to design and validate a phantom for investigating the impact of different tissue structures on shock formation in situ. A transducer with driving electronics was developed to operate at 1.2 MHz with the ability to deliver either short pulses at high powers (up to 5 kW electric power) or continuous output at moderate powers (up to 700 W). Fat and muscle layers were represented by phantoms made from polyvinyl alcohol. Ribs were 3D-printed from a photopolymer material based on 3D CT scan images. Representative targeted tissue was comprised of optically transparent alginate or polyacrylamide gels. The system was characterized by hydrophone measurements free-field in water and in the presence of a body wall or rib phantoms. Shocked waveforms with peak positive/negative pressures of +100 / –20 MPa were measured at the focus in a free field at 1 kW electric source power. When ribs were present, shocks formed at about 50% amplitude at the same power, and higher pressures were measured with ribs positioned closer to the transducer. A uniform body wall structure attenuated shock amplitudes by a smaller amount than non-uniform, and the measurements were insensitive to the axial position of the phantom. Signal magnitude loss at the focus for both the rib phantoms and abdominal wall tissue were consistent with results from real tissues. In addition, boiling histotripsy lesions were generated and visualized in the target gels. The results demonstrate that the presence of ribs and absorptive tissue-mimicking layers do not prevent shock formation at the focus. With real-time lesion visualization, the phantom is suitable for adaptation as a training tool.

More Publications

Inventions

Pulse Amplifier for Driving Ultrasound Transducers

Patent Number: 9,867,999

Adam Maxwell, Bryan Cunitz, Mike Bailey, Vera Khokhlova, Timothy Hall

More Info

Patent

16 Jan 2018

Embodiments of the invention include improved radiofrequency (RF) pulse amplifier systems that incorporate an energy array comprising multiple capacitors connected in parallel. The energy array extends the maximum length of pulses and the maximum achievable peak power output of the amplifier when compared to similar systems. Embodiments also include systems comprising the amplifier configured to drive a load, wherein the load may include one or more ultrasound (e.g., piezoelectric) transducers Related methods of using the amplifier are also provided.

Imaging Bubbles in a Medium

Patent Number: 9,743,909

Oleg Sapozhnikov, Mike Bailey, Joo Ha Hwang, Tatiana Khokhlova, Vera Khokhlova, Tong Li, Matthew O'Donnell

More Info

Patent

29 Aug 2017

A method for imaging a cavitation bubble includes producing a vibratory wave that induces a cavitation bubble in a medium, producing one or more detection waves directed toward the induced cavitation bubble, receiving one or more reflection waves, identifying a change in one or more characteristics of the induced cavitation bubble, and generating an image of the induced cavitation bubble using a computing device on the basis of the identified change in the one or more characteristics. The one or more received reflection waves correspond to at least one of the one or more produced detection waves reflection from the induced cavitation bubble. The identified change in one or more characteristics corresponds to the one or more received reflection waves.

Methods and Systems for Non-invasive Treatment of Tissue Using High Intensity Focused Ultrasound Therapy

Patent Number: 9,700,742

Michael Canney, Mike Bailey, Larry Crum, Joo Ha Hwang, Tatiana Khokhlova, Vera Khokhlova, Wayne Kreider, Oleg Sapozhnikov

More Info

Patent

11 Jul 2017

Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound ("HIFU") therapy. A method of non-invasively treating tissue in accordance with an embodiment of the present technology, for example, can include positioning a focal plane of an ultrasound source at a target site in tissue. The ultrasound source can be configured to emit HIFU waves. The method can further include pulsing ultrasound energy from the ultrasound source toward the target site, and generating shock waves in the tissue to induce boiling of the tissue at the target site within milliseconds. The boiling of the tissue at least substantially emulsifies the tissue.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close