Campus Map

Jim Thomson

Senior Principal Oceanographer

Professor, Civil and Environmental Engineering





Research Interests

Environmental Fluid Mechanics, Ocean Surface Waves, Marine Renewable Energy (tidal and wave), Coastal and Nearshore Processes, Ocean Instrumentation


Dr. Thomson studies waves, currents, and turbulence by combining field observations and remote sensing techniques


B.A. Physics, Middlebury College, 2000

Ph.D. Physical Oceanography, MIT/WHOI, 2006


Coastal Ocean Dynamics in the Arctic — CODA

Arctic coastlines are eroding at rates of meters per year. As the whole Arctic shifts into a modern epoch of seasonal ice cover and warmer temperatures, Arctic coastal processes are shifting, too. The overall goal of this research is to improve scientific understanding of wave–ice–ocean interactions along the Arctic coast, with particular attention to the oceanographic parameters that affect erosion.

8 Jan 2019

Stratified Ocean Dynamics of the Arctic — SODA

More Info

31 Oct 2016

Vertical and lateral water properties and density structure with the Arctic Ocean are intimately related to the ocean circulation, and have profound consequences for sea ice growth and retreat as well as for prpagation of acoustic energy at all scales. Our current understanding of the dynamics governing arctic upper ocean stratification and circulation derives largely from a period when extensive ice cover modulated the oceanic response to atmospheric forcing. Recently, however, there has been significant arctic warming, accompanied by changes in the extent, thickness distribution, and properties of the arctic sea ice cover. The need to understand these changes and their impact on arctic stratification and circulation, sea ice evolution, and the acoustic environment motivate this initiative.

Inner Shelf Dynamics

The inner shelf region begins just offshore of the surf zone, where breaking by surface gravity waves dominate, and extends inshore of the mid-shelf, where theoretical Ekman transport is fully realized. Our main goal is to provide provide improved understanding and prediction of this difficult environment. This will involve efforts to assess the influence of the different boundaries — surf zone, mid and outer shelf, air-water interface, and bed — on the flow, mixing and stratification of the inner shelf. We will also gain information and predictive understanding of remotely sensed surface processes and their connection to processes in the underlying water column.

15 Dec 2015

More Projects


Mapping Underwater Turbulence with Sound

More Info

9 Apr 2018

To dock at a terminal, large Washington State ferries use their powerful engines to brake, generating a lot of turbulence. Doppler sonar instruments are capturing an accurate picture of the turbulence field during docking procedures and how it affects terminal structures and the seabed. This research is a collaborative effort between APL-UW and the UW College of Engineering, Department of Civil and Environmental Engineering.

Marine Renewable Energy: Kvichak River Project

At a renewable energy site in the village of Igiugig, Alaska, an APL-UW and UW Mechanical Engineering team measured the flow around an electricity-generating turbine installed in the Kvichak River. They used modified SWIFT buoys and new technologies to measure the natural river turbulence as well as that produced by the turbine itself. The turbine has the capacity to generate a sizable share of the village's power needs.

25 Sep 2014

Ferry-Based Monitoring of Puget Sound Currents

Acoustic Doppler Current Profilers are installed on two Washington State Department of Transportation ferries to measure current velocities in a continuous transect along their routes. WSDOT ferries occupy strategic cross-sections where circulation and exchange of Puget Sound and Pacific Ocean waters occurs. A long and continuous time series will provide unprecedented measurements of water mass movement and transport between the basins.

9 May 2014

More Videos


2000-present and while at APL-UW

Constraining Southern Ocean air–sea–ice fluxes through enhanced observations

Swart, S., and 19 others including J. Thomson and J. Girton, "Constraining Southern Ocean air–sea–ice fluxes through enhanced observations," Front. Mar. Sci., 6, 421, doi:10.3389/fmars.2019.00421, 2019.

More Info

31 Jul 2019

Air–sea and air–sea–ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a 'knowledge gap' that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.

Wave attenuation by sea ice turbulence

Voermans, J.J., A.V. Babanin, J. Thomson, M.M. Smith, and H.H. Shen, "Wave attenuation by sea ice turbulence," Geophys. Res. Lett., 46, 6796-6803, doi:10.1029/2019GL082945, 2019.

More Info

28 Jun 2019

The dissipation of wave energy in the marginal ice zone is often attributed to wave scattering and the dissipative mechanisms associated with the ice layer. In this study we present observations indicating that turbulence generated by the differential velocity between the sea ice cover and the orbital wave motion may be an important dissipative mechanism of wave energy. Through field measurements of under‐ice turbulence dissipation rates in pancake and frazil ice, it is shown that turbulence‐induced wave attenuation coefficients are in agreement with observed wave attenuation in the marginal ice zone. The results suggest that the turbulence‐induced attenuation rates can be parameterized by the characteristic wave properties and a coefficient. The coefficient is determined by the ice layer properties.

Tidal current observations through Admiralty Inlet from ferry-mounted current profilers

Guerra, M., J. Thomson, T. Prusa, C. Falkenhayn Maloy, C. Krembs, and B. Sackmann, "Tidal current observations through Admiralty Inlet from ferry-mounted current profilers," J. Ocean Eng. Mar. Energy, EOR, doi:10.1007/s40722-019-00135-w, 2019.

More Info

10 Jun 2019

Admiralty Inlet is a narrow sill located at the northern end of Puget Sound (WA, USA). Circulation through Admiralty Inlet is complex, with tidal currents exceeding 3 m s-1, large variations in fresh water input to the system, and seasonal ocean water intrusions. Long-term observations of the currents across the entire inlet are crucial for understanding circulation through Puget Sound. In this context, the Washington State Department of Transportation (WSDOT) Ferries, which run year round through Admiralty Inlet, provide a cost-effective platform to mount instruments and obtain long time series of currents distributed across the inlet. Through the Ferry-Base Monitoring of Puget Sound Currents project, two down-looking acoustic Doppler current profilers (ADCPs) are installed on board two WSDOT ferries, providing depth profiles of velocities across the inlet since May 2014. All data are quality controlled and organized in an horizontal and vertical grid across the inlet. Data within each grid cell are analyzed to capture tidal current harmonic components. Results agree well with data from fixed bottom-mounted ADCPs, and show large spatial variability in the amplitude of harmonic components, probably related to the bathymetric features of the inlet. Further analysis provides estimates of tidal asymmetry and residual currents through the inlet, which are relevant to water quality within the Puget Sound.

More Publications

In The News

Public talks kick off study of ice loss, warming and coastal changes in northern Alaska

UW News

The northernmost town in the country had its warmest March on record. Utqiagvik, formerly known as Barrow, is among the coastal communities that are feeling the effects of a warming Arctic firsthand.

25 Apr 2019

State investigators focus on nets plugged with mussels in Atlantic salmon net-pen failure

The Seattle Times, Lynda Mapes

Cooke Aquaculture’s maintenance practices at its collapsed Atlantic salmon farm at Cypress Island have drawn the attention of state investigators after nets were found fouled with mussels and other sea life. Fluid mechanics expert Jim Thomson notes that nets clogged with sea life create greater drag forces in the ocean currents, increasing the risk of structural failure.

26 Jan 2018

Partners in Extreme Wave Modeling

Engineering Out Loud Podcast, Jens Odegaard

How do you forecast and model huge waves in the open ocean? As part of the National Marine Renewable Energy Center, researchers at Oregon State University and the University of Washington are modeling and forecasting extreme waves to help inform wave energy technology.

25 Oct 2017

More News Items



Record of Invention Number: 48200

Jim Thomson, Alex de Klerk, Joe Talbert


6 Nov 2017

SWIFT: Surface Wave Instrument Float with Tracking

Record of Invention Number: 46566

Jim Thomson, Alex De Klerk, Joe Talbert


24 Jun 2013

Heave Place Mooring for Wave Energy Conversion (WEC) via Tension Changes

Record of Invention Number: 46558

Jim Thomson, Alex De Klerk, Joe Talbert


19 Jun 2013

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center