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Abstract

In active sonar systems, a clutter-dominated background is often the limiting factor affecting
detection performance. Sources of clutter typically violate the central-limit-theorem conditions that
lead to Gaussian distributed bandpass measurements, necessitating more general statistical models
to represent their effect on the system. The generalized Pareto distribution (GPD) is a common
phenomenological model for clutter, with its shape parameter representing severity through the
heaviness of the distribution tail. The focus of this report is on techniques for representing active
sonar clutter with the GPD model and assessing the degradation in detection performance as the
clutter severity increases. The GPD shape parameter is interpreted through its relationship to the
K-distribution shape parameter to understand what values are appropriate in different modeling
scenarios (e.g., ranging from mild to extremely heavy-tailed clutter). A comparison of parameter
estimators leads to one reliably providing an estimate representative of a physically realizable pro-
cess. Approximations to the design SNR required to achieve a detector operating-point specification
(i.e., the detection threshold term in the sonar equation) for the standard signals in GPD clutter
are presented as is the J-divergence detection currency when accounting for thresholding. These
simple approximations enable more realistic prediction of active-sonar detection performance by
accounting for clutter severity through the GPD model.

ii TR 2401



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Contents

1 Introduction 1

2 Genesis and properties of the generalized Pareto distribution (GPD) 3
2.1 Distribution, moments, and scintillation index . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Interpreting the shape parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The GPD is a closed distribution family under thresholding . . . . . . . . . . . . . . 8
2.4 The GPD is a limit distribution for the excess over the threshold . . . . . . . . . . . 8

3 Estimating the GPD shape and scale parameters 9
3.1 Maximum likelihood estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Method of moments: Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Method of moments: Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Solving the envelope moment-ratio equation . . . . . . . . . . . . . . . . . . . 14
3.4 Method of moments: Bayesian posterior mean . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Design SNR for a (Pd, Pf ) specification in GPD clutter 18
4.1 Single-intensity detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Detector decision threshold in GPD clutter . . . . . . . . . . . . . . . . . . . 19
4.1.2 Integral equations for Pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Design SNR using a Gaussian-noise approximation . . . . . . . . . . . . . . . 20

4.2 Integrated-intensity detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Design SNR using a Gaussian-noise approximation . . . . . . . . . . . . . . . 26
4.2.2 Integral equations for Pf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Empirical inversion of Pf to find the decision threshold . . . . . . . . . . . . . 31
4.2.4 Integral equation for Pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Adjusting a measured design SNR to account for clutter . . . . . . . . . . . . . . . . 33
4.3.1 Approximation for a Gaussian-fluctuating signal . . . . . . . . . . . . . . . . 34
4.3.2 Approximation for a deterministic signal . . . . . . . . . . . . . . . . . . . . . 34

5 J-divergence detection currency for signals in GPD clutter 35
5.1 Intensity PDF for a Rician signal in GPD clutter . . . . . . . . . . . . . . . . . . . . 36
5.2 Numerical evaluation of J-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 J-divergence detection currency after thresholding . . . . . . . . . . . . . . . . . . . 38

5.3.1 Gamma approximation to the excess over the threshold . . . . . . . . . . . . 40
5.3.2 Accuracy of the detection-currency approximation . . . . . . . . . . . . . . . 42
5.3.3 Kullback-Liebler divergences between the gamma and GPD models . . . . . . 43

6 Conclusions 44

References 46

TR 2401 iii



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

A MATLAB® functions for intensity distributions in GPD clutter 48
A.1 Intensity PDF for GPD clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Intensity CDF for GPD clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 Inverse of GPD-intensity CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.4 Intensity CDF of a Rician signal in GPD clutter . . . . . . . . . . . . . . . . . . . . 49
A.5 Intensity PDF of a Rician signal in GPD clutter . . . . . . . . . . . . . . . . . . . . . 49
A.6 GPD random number generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.7 Support function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B MATLAB® functions for estimating the GPD shape parameter 50
B.1 Example estimation of Pf for GPD clutter . . . . . . . . . . . . . . . . . . . . . . . . 50
B.2 Envelope method-of-moments estimator . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.3 Intensity method-of-moments estimator . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.4 Functional inverse of the GPD moment-ratio equation . . . . . . . . . . . . . . . . . 51
B.5 Bayesian method-of-moments estimator . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.6 Mixed Bayesian method-of-moments estimator . . . . . . . . . . . . . . . . . . . . . 52
B.7 Maximum likelihood estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C MATLAB® functions for design SNR in GPD clutter 53
C.1 Detection threshold (DT) in GPD clutter . . . . . . . . . . . . . . . . . . . . . . . . 53
C.2 Numerical evaluation of Pd for intensity integration in GPD clutter . . . . . . . . . . 53
C.3 Numerical evaluation of Pf for intensity integration in GPD clutter . . . . . . . . . . 54
C.4 Empirical formula for the detector decision threshold (h) with intensity integration

in GPD clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D MATLAB® functions for evaluating JDC in GPD clutter 56
D.1 Numerical evaluation of JDC for a Rician signal in GPD clutter . . . . . . . . . . . . 56
D.2 Approximating JDC after thresholding for a Rician signal in GPD clutter . . . . . . 57

D.2.1 JDC using the gamma approximation . . . . . . . . . . . . . . . . . . . . . . 57
D.2.2 Gamma approximation to the excess over the threshold . . . . . . . . . . . . 57

D.3 KL divergence functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
D.3.1 KL divergence between gamma and GPD models . . . . . . . . . . . . . . . . 58
D.3.2 KL divergence between two gamma distributions . . . . . . . . . . . . . . . . 59

iv TR 2401



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

1 Introduction

The performance of active sonar systems is often limited by false alarms arising from reflec-
tions of the sensing waveform off physical objects, boundaries, or other discontinuities in the ocean
environment. When these reflectors have a myriad of independent scattering elements, the cen-
tral limit theorem (CLT) dictates that the combined acoustic pressure measurement, termed re-
verberation, will follow a Gaussian distribution. Subsequent signal processing (basebanding and
matched filtering) of the bandpass reverberation measurements converts the Gaussian distribution
to a Rayleigh-distributed envelope and an exponentially-distributed instantaneous intensity. This
scenario, with its distribution chain,1 defines the nominal benign background. Although sources
of reverberation satisfying the requirements of the CLT are ubiquitous, it is not uncommon to en-
counter those that do not and these interferences are often the ones driving performance. Termed
clutter in active sonar, such objects typically have too few independent elemental scatterers, which
leads to a larger number of false alarms than that expected under a benign background. From
a modeling perspective, the upper tail of the normalized envelope or intensity probability density
function (PDF) is heavier for clutter than for reverberation. For a fixed detector decision threshold,
this causes the probability of false alarm (Pf ) in clutter-dominated regions to be higher than in the
more benign conditions typical of diffuse reverberation or ambient noise. In systems with a variable
threshold that adapts to maintain a constant probability of false alarm, the increase required in
clutter-dominated areas results in a reduction in the probability of detection. The focus of this
report is on using the generalized Pareto distribution (GPD) to represent clutter in modeling the
detection performance of active sonar systems.

There are many statistical distributions that can be used to represent clutter [1, Sect. 7.4.3],
including ones with physical interpretations (e.g., the K and Poisson-Rayleigh distributions) and
those with phenomenological support (e.g., the GPD, Weibull and log-normal distributions). Of
these, the K-distribution will be used to interpret the severity of the GPD and to subsequently
define different regimes of interest for the GPD parameter controlling tail heaviness. A motivating
example illustrating strong support for the GPD model is found in Fig. 1 where Pf is shown
as a function of the detector decision threshold for data obtained during the NATO SCARAB
1997 Experiment.2 The probability of false alarm is also shown for an exponentially-distributed
intensity and the heavier-tailed K and GPD models. Although most of the data from the SCARAB
1997 Experiment were fit well by the K-distribution [3], this particular segment, which contained
reflections from steep bathymetry, is fit best by the GPD model.

The GPD was shown in [4] to arise from a modulation process between an exponentially-
distributed instantaneous intensity (representative of a benign background) and an inverse-gamma-
distributed random variable (nominally representing a random multiplicative effect). This model is
a scalar form of the more general spherically invariant random vector (SIRV) model [5]. La Cour [6]
and Gelb [7] have championed use of the GPD to represent active sonar clutter, with a focus on how
it is useful when representing the distribution above the detector decision threshold. Background
on the GPD, its SIRV genesis model, properties, and how to interpret the shape parameter (γ)
controlling tail heaviness are found in Sect. 2.

Although the K-distribution provides an interpretation of the GPD shape parameter when
matching the scintillation index (see Sect. 2.2), estimating γ from measured data allows its use in

1A distribution chain is the sequence of statistical distributions required to represent a random signal and/or noise
as it passes through the operations comprising a signal processing chain [1, pg. 388].

2Acknowledgement: [2] with gratitude to Dr. C. Holland (scientist in charge, SCARAB 1997 Experiment).
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Figure 1: Probability of false alarm as a function of the normalized-intensity detector decision
threshold for data from the SCARAB 1997 Experiment [2] along with that obtained for the K and
generalized-Pareto distributions.

signal processing algorithms and can provide a more pertinent assessment when modeling detection
performance in clutter-dominated backgrounds. Several parameter estimators for γ are presented
and compared in Sect. 3. An iterative solution to the maximum likelihood estimator (MLE) for
γ was presented in [6]. However, it is unconstrained and therefore can yield values outside of the
interval [0, 0.5) for which the GPD has tails at least as heavy as the exponential distribution (γ ≥ 0)
and where the intensity has a finite variance (γ < 0.5). The method-of-moments-based Bayesian
approach found in [8] for the K-distribution shape parameter is extended in Sect. 3.4 to produce an
estimator of the GPD shape parameter that always lies on the interval [0, 0.5). This enables use of
the estimate in modeling and analysis requiring distributions representative of physically realizable
processes.

Modeling sonar performance in clutter often starts with forward models of the probabilities of
false alarm (Pf ) and detection (Pd), given the signal-to-noise power ratio (SNR) and the shape
parameter of the clutter distribution. The relationship between the detector decision threshold (h)
and Pf , which is defined by the cumulative distribution function (CDF) of the detector’s decision
statistic, is typically straightforward to evaluate, especially when the detector comprises a single
instantaneous intensity. Although evaluating Pd for signals in heavy-tailed noise is more difficult,
there exist approximations that can be usefully accurate [1, Sect. 7.5.6]. For example, a Gaussian-
noise-background approximation was used in [9] to obtain the design SNR achieving a desired
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(Pd, Pf ) operating point (i.e., the detection threshold (DT) term of the sonar equation) for signals
in K-distributed clutter. This approximation essentially uses the decision threshold dictated by
the clutter distribution in the Pd model for a benign background. The approach is applied in
Sect. 4 to obtain very simple approximations to DT for deterministic and Gaussian-fluctuating
signals in GPD clutter. An interesting result of the analysis is seen in Sect. 4.3 where DT in clutter
can be approximated by DT in the benign background plus the decibel change in the intensity
decision threshold required to maintain a constant Pf . The case of a detector formed by integrating
intensities is also considered and seen to yield useful approximations to DT given the detector
decision threshold. However, the relationship between h and Pf for the integrated-intensity detector
is quite complicated and requires numerical evaluation (Sect. 4.2.2 & App. C.3) or an empirical
approximation (Sect. 4.2.3 & App. C.4). The empirical approximation to the decision threshold
provides a simple means for approximating DT in GPD clutter for the integrated-intensity detector,
but comes at the expense of a larger error or a smaller viable parameter space than the single-
intensity detector.

The final section of this report (Sect. 5) considers the J-divergence detection currency (JDC) [10]
for the basic sonar signal models in GPD clutter. JDC is an alternative detection performance mea-
sure to the traditional (Pd, Pf ) operating point, providing a simple scalar measure of performance
that can easily be accrued over multiple measurements (the linear quantities simply add) and can be
extended throughout the signal and information processing chain. Its basic application to a Rician
signal (which contains both deterministic and Gaussian-fluctuating signals) in a benign background
was covered in [10]. Given the complicated form of the intensity PDF for a signal in clutter, a nu-
merical evaluation of J-divergence is mandated (Sect. 5.2). However, when incorporating the effect
of thresholding a decision statistic prior to combination across measurements (Sect. 5.3), accurate
approximations can be employed to more easily obtain JDC for a Rician signal in GPD clutter.

In addition to the techniques and analysis presented in Sects. 3–5 for parameter estimation and
sonar performance modeling in GPD clutter, MATLAB® functions implementing the key results are
provided in the appendices.

2 Genesis and properties of the generalized Pareto distribution
(GPD)

The generalized Pareto distribution (GPD) [11, Ch. 20] is a member of the class of spherically
invariant random vector (SIRV) models [5, 12], which are formed by modulating a multi-variate,
zero-mean, Gaussian-distributed complex envelope by an independent, non-negative random scalar.
The GPD is obtained in this formulation [4] when the square of the modulating random scalar
follows an inverse gamma distribution (i.e., one over a gamma-distributed random variable). This is
more easily described by characterizing the instantaneous intensity of a single sample as the quotient

Y =
Yo
W

[units: power] (1)

where Yo follows an exponential distribution with mean λ and W is an independent, gamma-
distributed random variable with shape parameter 1/γ and scale parameter γ. In this formulation,
the exponentially-distributed numerator is representative of a Gaussian-distributed complex enve-
lope and the randomness of the gamma-distributed W increases the tails of the PDF of Y , which
allows representing active-sonar clutter exhibiting higher false alarm rates than those observed in

TR 2401 3



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

a benign background. Although the GPD does not have a genesis as a physical-statistical model
(as does the K-distribution), it can be quite effective at representing heavy-tailed sonar clutter, as
shown in [6, 7] and the motivating example seen in Fig. 1. As described in Sect. 2.4, it is also the
limiting distribution describing the upper tail of many statistical models representing heavy-tailed
data.

In the statistical analysis of clutter in active sonar systems, models can be applied to the
modulus (i.e., the envelope) or squared modulus (i.e., the instantaneous intensity) of the complex-
matched-filter response. These are most easily identified through their units. In this report, the
complex-matched-filter response and its modulus will be defined as having “field” units, which
could be pressure or a quantity proportional to pressure. The squared modulus will be defined as
having “power” units in representation of a generic power quantity obtained by squaring a field
quantity. Common power quantities include squared pressure and acoustic intensity. The theo-
retical analysis often exploits perfect normalization, which produces a unitless quantity. When
there might be confusion as to how these quantities are formed, a description is provided (e.g.,
[unitless: normalized power] when formed from a ratio of two power quantities).

2.1 Distribution, moments, and scintillation index

The characteristics of the generalized Pareto distribution can be found in [11, Ch. 20] or [1, pgs.
302 & 417]. The following definitions use the notation found in the latter reference. The probability
density function of the matched-filter intensity is

fY (y) =
1

λ
(
1 + γ

λy
)γ−1+1

for y ≥ 0, (2)

where γ is the shape parameter and λ > 0 is the scale parameter. By letting γ → 0 in (2), it can
be shown3 that fY (y) → e−y/λ/λ, which is an exponential distribution with mean λ. Increasing γ
from zero clearly slows the decay of the PDF at large arguments, implying it represents a worsening
of the clutter.

The GPD cumulative distribution function,

FY (y) = 1− 1(
1 + γ

λy
)γ−1 for y ≥ 0, (3)

is easily obtained by integrating (2). When setting a decision threshold as a function of the prob-
ability of false alarm (Pf ) and the GPD shape and scale parameters, (3) can easily be solved to
yield

h =
λ

γ

(
1

P γf
− 1

)
[units: power]. (4)

The mean of the distribution is

E[Y ] =
λ

1− γ
for γ < 1 [units: power] (5)

3Apply L’Hôpital’s rule to log fY (y).
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and the variance is

Var{Y } =
λ2

(1− γ)2(1− 2γ)
for γ < 0.5 [units: power2]. (6)

These are easily combined to produce the scintillation index (SI), which is the ratio of the variance
of the instantaneous intensity to the square of its mean,

SI =
Var{Y }
(E[Y ])2

=
1

1− 2γ
[unitless: normalized power2]. (7)

The scintillation index is a useful measure of PDF tail heaviness relative to the exponential distri-
bution, for which SI = 1. Heavier-tailed distributions have a larger SI and lighter-tailed models a
smaller one (e.g., a deterministic signal has SI = 0).

From [1, pg. 302], the kth moment of the GPD is

E[Y k] =
λkΓ(k + 1)Γ

(
γ−1 − k

)
γkΓ(γ−1)

for γ < 1/k [units: powerk]. (8)

This illustrates that for a given value of γ, only the moments up to k < 1/γ exist.

Less common forms of the distribution:

For many heavy-tailed clutter models, it is more convenient to work with the instantaneous
intensity as opposed to the envelope. For example, it can be seen from (8) that odd moments of the
envelope (for which k = 0.5, 1.5, 2.5, . . . ) do not simplify to rational functions of γ. However, as
will be seen in Sect. 3, it can sometimes be advantageous to work with envelope data. The envelope
is formed from the instantaneous intensity by the simple transformation X =

√
Y [units: field],

which in turn transforms the CDF in (3) to

FX(x) = FY (x
2) = 1− 1(

1 + γ
λx

2
)γ−1 for x ≥ 0. (9)

Differentiating this then produces the PDF of the envelope,

fX(x) =
2x

λ
(
1 + γ

λx
2
)γ−1+1

for x ≥ 0. (10)

The moments of the envelope are straightforward to construct from (8).

The final step backwards in the distribution chain to the complex envelope (Z) producing a
GPD instantaneous intensity (e.g., Y = |Z|2) can be made assuming the phase is uniformly random
on [0, 2π). This then results in the PDF

fZ(z) =
1

πλ
(
1 + γ

λ |z|2
)γ−1+1

(11)

for z in the complex plane.
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2.2 Interpreting the shape parameter

As with other heavy-tailed models, the shape parameter (γ) of the GPD dictates the severity
of the clutter it represents. As noted above, γ = 0 represents a benign background and increasing
γ from zero increases tail heaviness. To aid in the interpretation of the GPD shape parameter, it
is related here to the physical model of the K-distribution by equating scintillation index. First,
however, it is interesting to note that the ratio in (1) can be interpreted as an instantaneous intensity
(Yo) normalized by an estimate of the background power (W ). In particular, a cell-averaging
constant-false-alarm-rate (CA-CFAR) normalizer [1, Sect. 8.6.1] operating in a benign background
produces data following the GPD with γ = 1/L when the background power estimate is the average
of L independent intensity samples.4 L is approximately the product of the waveform bandwidth
[units: Hz] and the temporal extent [units: s] of the background estimation window. The large
quantities of stationary data required to estimate what can be small probabilities of false alarm
typically can only be obtained after normalization. Although this is appropriate when assessing
system performance, low quality normalizers (e.g., those with small values of L) can obscure the
underlying clutter statistics and should therefore be taken into account when analyzing the clutter
source is the primary objective.

Under the SIRV representation, the shape parameter of the GPD must be non-negative (γ ≥ 0)
because the shape parameter of the gamma distribution describing W must be positive. Although
negative values of γ may be permitted by the functions shown in Sect. 2.1, they represent distribu-
tions with lighter upper tails than the nominal exponential distribution and impart an upper limit
on their argument. As such, they are generally deemed inappropriate when representing active
sonar clutter. Letting γ tend to zero causes the distribution of W to tend to an impulse function at
W = 1 (note that the mean of W is one and its variance is γ), which implies that Y is exponentially-
distributed when γ = 0. As γ increases from zero, the tails of the distribution increase, as can be
seen in Fig. 2, which displays the probability of false alarm when a single (perfectly) normalized
intensity is compared to the detector decision threshold.

A phenomenological application of the GPD might require a large value of γ to accurately rep-
resent extreme observations of active-sonar clutter. However, the variance of the instantaneous
intensity under the GPD model is infinite when γ ≥ 0.5. This suggests limiting GPD shape param-
eters to be on the interval γ ∈ [0, 0.5) to represent physically realizable random processes. Within
this regime, a lexicon for describing clutter can be obtained by mapping the first two intensity
moments of the GPD to those of the K-distribution to obtain an equivalent K-distribution shape
parameter,

α =
1

γ
− 2 (12)

or γ = 1/(α + 2) when starting with α. The physical interpretation of α as being proportional to
the number of independent scatters contributing to the clutter [13] can then be employed to define
the set of clutter regimes shown in Table 1. Because the first two intensity moments for the GPD
and K-distributions are the same under (12), they have the same scintillation index,

SI =
1

1− 2γ
= 1 +

2

α
(13)

for γ ∈ [0, 0.5) and α > 0. This relationship illustrates that the benign-background case of an
exponentially-distributed instantaneous intensity, for which SI = 1, occurs when γ → 0 and α→ ∞.

4The GPD is proportional to an F -distributed random variable with ν1 = 2 and ν2 = 2/γ degrees of freedom.
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Figure 2: Probability of false alarm as a function of the normalized-intensity detector decision
threshold for generalized-Pareto-distributed clutter with different shape parameters. The variance
of the instantaneous intensity is only finite when γ < 0.5.

Table 1: Lexicon for describing heavy-tailed noise.

Regime in
scintillation
index (SI)

Regime
in

K shape

Regime in
GPD
shape

How
heavy
tailed? Characterization

1 ≤ SI < 1.2 10 < α ≤ ∞ 0 ≤ γ < 0.08 scarcely diffuse noise or reverberation
(very close to benign bkgnd.)

1.2 ≤ SI < 1.4 5 < α ≤ 10 0.08 ≤ γ < 0.14 mildly diffuse clutter (e.g., rocky
ridge, seaweed, fish schools)

1.4 ≤ SI < 2 2 < α ≤ 5 0.14 ≤ γ < 0.25 moderately discrete, multi-faceted clutter
(e.g., oil rig or fragmented
shipwreck)

2 ≤ SI < 9 0.25 < α ≤ 2 0.25 ≤ γ < 0.44 very single dominant scatterer
(e.g., with very compact
structure)

SI ≥ 9 0 < α ≤ 0.25 0.44 ≤ γ < 0.5 extremely not explained by a single
process (via K-distribution)
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As α decreases to the point where there are too few independent scatterers for the central limit
theorem to yield an adequate approximation to a Gaussian-distributed complex envelope, the upper
tail of the intensity distribution becomes heavier and γ increases.

The first four regimes seen in Table 1 describe increasing severity in terms of tail heaviness
along with potential examples of clutter sources. The examples shown in Fig. 2 illustrate how the
heavier tails impact the probability of false alarm. When α equals 0.5, which equates to γ = 0.4, the
K-distribution interpretation for scatterers having an exponentially-distributed size is that there is
a single dominant scatterer [13, eq. 15]. Accounting for some variation in the size distribution, the
regime for which α ∈ (0, 0.25] or γ ∈ [0.44, 0.5) is not easily explained by a single process.

When data are observed with extremely heavy tails (γ ≥ 0.44 or α < 0.25) or in the upper end
of very heavy tails, it may be more appropriate to use mixture models [14] or the clutter sources
should be viewed as discrete interferences with average intensities exceeding the noise background.
Raising the detector decision threshold is not likely to control these types of sources—their echoes
are generally large enough relative to the local background for them to be detected with ease. As
such they are typically handled by (or cause problems in) subsequent information processing such
as tracking and classification.

2.3 The GPD is a closed distribution family under thresholding

A useful property of the GPD is that it is closed under the process of thresholding. That is, the
distribution of the excess over a threshold (given it is exceeded) is another GPD. Suppose

Z = Y − h given Y > h, (14)

where Y is GPD with shape γ and scale λ. The PDF of Z is

fZ(z) =
fY (z + h)

1− FY (h)
=

1

λ̃
(
1 + γz/λ̃

)γ−1+1
for z ≥ 0, (15)

which is GPD with the same shape parameter and a scale parameter λ̃ = λ+γh. The self-replicating
memoryless property of the exponential distribution can be seen by setting γ = 0, so the excess
over the threshold is exponentially distributed with mean λ just like the unthresholded intensity.

The importance of this result lies in the ability to estimate the shape parameter from thresholded
data, which can be helpful when analyzing active-sonar clutter.

2.4 The GPD is a limit distribution for the excess over the threshold

When γ = 0, the GPD simplifies to an exponential distribution with mean λ, which has PDF

fY (y) =
e−y/λ

λ
for y ≥ 0. (16)

The decay of the PDF is clearly exponential with y. For γ > 0, it can be seen from the PDF in (2)
that the decay tends to an inverse power-law as y increases. This tail behavior can be characterized
by considering the distribution of the excess over the threshold (EOT). In Sect. 2.3, this was shown
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to be another GPD with the same shape parameter and a different scale, so the EOT for the GPD
always has an inverse power-law tail behavior when γ > 0.

One of the arguments made in [6] for use of the GPD to represent sonar clutter was that it is one
of the limiting distributions of the EOT. The limit theorem [15, 16] dictates the EOT distribution
for random variables with a domain y ≥ 0 tends to either an exponential or generalized Pareto
distribution as the threshold increases to infinity. This implies that the GPD could be a good fit
above some finite threshold for distributions having the inverse power-law tail behavior. However,
the argument weakens as the threshold decreases and does not apply when the tail behavior has
exponential decay, as is the case for the K-distribution. Thus, whether the GPD is appropriate
can depend on how far out into the tails is of interest and whether the underlying distribution has
inverse power-law tail behavior or not.

Recall that the GPD is a scaled F distribution, which is also representative of an exponentially-
distributed instantaneous intensity normalized by a cell-averaging estimate of the power in a benign
background. In this example the normalization process transforms a distribution with exponential
decay in the tails to one having an inverse power-law behavior. With a high-quality normalizer,
however, this might not be apparent except at the highest threshold levels. Conversely, a low-quality
normalizer may require the GPD model even at low thresholds. When the clutter statistics are used
to infer the state of nature (e.g., a characteristic or condition of the clutter source), it is clear that
the normalizer needs to be designed so it does not adversely affect the inference or that the inference
takes into account the normalization.

In the case of a normalizer, it is the division by an estimate of the background power (λ̂) that
causes the change in tail behavior. The background power estimate can be assumed to have expo-
nential tail behavior by noting that averaging lightens heavier tails toward the Gaussian distribution
(via the central limit theorem). It is then straightforward to show that inverting a random variable
with exponential tail behavior produces one following an inverse power-law. That the power-law
tail behavior dominates in the product between 1/λ̂ and the test cell in a normalizer can be seen
using Mellin transforms, where the transform of the product of two independent random variables
is the product of their individual transforms. The Mellin transform essentially provides a spectrum
with a power series kernel [17, pg. 256] and some distributions with power-law tail behavior (e.g.,
the F distribution and the inverse of many exponential-tail-behavior PDFs) exhibit a discontinuity
to infinity at their power, which dominates the transform of the lighter-tailed term.

3 Estimating the GPD shape and scale parameters

The GPD shape parameter (γ) provides a measure of the heaviness of the clutter distribution
tail, which impacts false-alarm performance in active sonar systems. Several techniques for esti-
mating γ are presented and evaluated in this section. When shape-parameter estimates are utilized
in performance prediction (e.g., when evaluating the design SNR in Sect. 4 or the J-divergence de-
tection currency in Sect. 5) or incorporated into signal and information processing algorithms, the
estimates ideally represent viable clutter distributions in the sense that they should be no lighter-
tailed than a benign background (i.e., γ ≥ 0) and should have a finite variance (i.e., γ < 0.5). When
the first condition is violated, the clutter distribution is referred to as being sub-Rayleigh (γ < 0),
referencing the Rayleigh-distributed envelope found in a benign background. The latter condition
(γ ≥ 0.5) will be referred to as an infinite-variance clutter distribution. As seen in Sects. 3.1–3.3 and
illustrated in Fig. 3, the most common approaches to parameter estimation (maximum likelihood
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and method of moments) do not necessarily constrain the estimates to lie on the interval [0, 0.5). To
satisfy this requirement, the Bayesian approach described in [8] for estimating the K-distribution
shape parameter is extended in Sect. 3.4 to the GPD.

To illustrate the issues surrounding estimation of the GPD shape parameter, consider the his-
tograms of parameter estimates shown in Fig. 3. Although the true value of γ = 0.25 is in the
middle of the viable range, it represents moderate to very heavy-tailed clutter (e.g., it has SI = 2
and is equivalent to a K-distribution shape parameter of α = 0.25). In this example, only N = 100
independent intensity samples are used in the parameter estimation so the issues are apparent in
the histograms. Most applications will utilize more intensity samples in the estimation and en-
counter failures less frequently. Examples using N = 1000 intensity samples are shown in Fig. 4
for γ = 0.44 (extremely heavy-tailed clutter) and in Fig. 5 for γ = 0.01 (which is essentially a
Rayleigh-distributed envelope).
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Figure 3: Histograms of GPD shape parameter estimates using N = 100 independent intensity
samples when γ = 0.25.

In discussing these examples, the following comments refer to Fig. 3; however, many also apply
to the other scenarios. The maximum likelihood estimator (Sect. 3.1),5 exhibits both sub-Rayleigh
and infinite-variance estimates and (in this example) the highest root mean-squared-error (RMSE).
Although the intensity method-of-moments (MoM) estimator (Sect. 3.2) inherently does not produce

5The MLE iteration in this example is initialized using the intensity MoM estimate because it is always available.
It is not necessarily a global maximum in every example as a better initialization might improve MLE performance.
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infinite-variance estimates because it utilizes the moment equation for a squared intensity, it can
produce sub-Rayleigh ones. When envelope moments are used in an MoM estimator (Sect. 3.3), the
converse occurs: it produces no sub-Rayleigh estimates, but can produce infinite-variance estimates.
The envelope MoM estimator can also fail to produce invertible moment equations, in which case
a Rayleigh-envelope distribution (γ = 0) is assumed. This can be seen by the large number of
occurrences of γ = 0 in the middle plot of Fig. 3. The Bayesian adaptation of the envelope-MoM
estimator (Sect. 3.4) illustrates the desired restriction to viable clutter distributions and the smallest
RMSE in this example. An alternative estimator that uses the basic envelope-MoM estimator when
it produces a viable result and otherwise resorts to the Bayesian adaptation is shown in the bottom
plot of Fig. 3. In this example, the mixed approach performs poorly compared to the straight
Bayesian envelope-MoM estimator. However, it can be slightly better when the shape parameter is
closer to the boundaries of the viable-clutter regime and has compelling performance when a larger
number of intensity samples are utilized in the estimators (e.g., see Figs. 4 & 5).

With respect to computational effort, the MLE requires the most owing to its implementation
as an iteration. The intensity-MoM estimator requires the least as it is a linear function of a ratio of
sample moments. The envelope-MoM estimators require inversion of a one-dimensional non-linear
function and so require more effort than the intensity-MoM estimator but less than the MLE. The
functional inversion can be avoided using the simple approximation presented in Sect. 3.3.1 at the
cost of a small loss in performance. The Bayesian envelope-MoM estimator requires a step to adjust
the sample-moment-ratio into the viable-clutter regime. This involves incomplete gamma functions,
so the additional computational requirement is not insignificant. However, it is still significantly
quicker than the MLE.

The different estimators are described or derived in Sect. 3.1–Sect. 3.4. An analysis of the errors,
including a comparison to the Cramér-Rao lower bound, is presented as a function of γ in Sect. 3.5.

3.1 Maximum likelihood estimator

Although no closed-form solution exists to the maximum likelihood estimator (MLE) of the
GPD parameters, it is amenable to an iterative solution. From [6, eqs. 13a & 13b] the updates for
the shape and scale parameters are

γ̂ :=
1

N

N∑
n=1

log

(
1 +

γ̂Yn

λ̂

)
(17)

and

λ̂ :=
1 + γ̂

N

N∑
n=1

Yn

1 + γ̂Yn/λ̂
, (18)

where the operator := represents replacement in an iterative numerical evaluation. The initial
parameter estimates can be obtained from one of the method-of-moment procedures described in the
following sections. Starting it at arbitrary values generally requires more iterations for convergence.
Examining (17), it can be seen that the iteration does not alter the sign of the shape parameter
and if γ̂ starts out at zero it stays there. The primary issues with the MLE are (i) it can produce
shape parameter estimates outside of [0, 0.5) and (ii) convergence can take many iterations.
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Figure 4: Histograms of GPD shape parameter estimates using N = 1000 independent intensity
samples when γ = 0.44.
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Figure 5: Histograms of GPD shape parameter estimates using N = 1000 independent intensity
samples when γ = 0.01.
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When implementing the iteration with an initial value of γ̂ < 0, the argument of the logarithm in
(17) must be tested to ensure it exceeds zero (i.e., that λ̂ > −γ̂maxn{Yn}). If an iteration violates
this, it should be restarted using a positive value of γ̂.

3.2 Method of moments: Intensity

The method-of-moments (MoM) estimator using the first two intensity moments is formed by
solving (5) and (6) for γ and replacing the mean and variance by their estimators,

γ̂ =
1

2

(
1− µ̂2

σ̂2

)
(19)

where

µ̂ =
1

N

N∑
n=1

Yn (20)

σ̂2 =
1

N

N∑
n=1

(Yn − µ̂)2 . (21)

Noting that the sample mean and sample variance of intensity measurements are always non-
negative, it can be seen that γ̂ in (19) must be below 0.5. This follows from the requirement
on the variance. However, it can produce estimates that are negative. From the form of (19), it can
be seen that this is more likely to occur when the scintillation index SI = σ2/µ2 equals one (i.e.,
when the envelope is Rayleigh distributed), which is when γ = 0. Although this suggests limiting
the estimate to zero when a sub-Rayleigh value is observed, this can occur for larger values of γ
with some frequency when N is not large (e.g., see Fig. 3).

Given an estimate of the shape parameter, the MoM estimate of the scale parameter is simply

λ̂ = µ̂(1− γ̂). (22)

The intensity-MoM estimator is the simplest to implement and always produces a solution.
However, the possibility of observing negative shape-parameter estimates and poor performance for
very heavy-tailed distributions make it less desirable.

3.3 Method of moments: Envelope

In [18], it was shown for the K-distribution that a method of moments estimator using the
first two moments of the envelope (which is the square root of the intensity) performed better than
one based on the first two intensity moments. The squaring of intensity measurements is likely
exacerbated by heavy-tailed distributions, which suggests the approach may be similarly beneficial
when estimating the GPD shape parameter.

Let X =
√
Y be the envelope measurement. Using the k = 0.5 moment from (8) produces the

envelope mean,

E[X] = E[
√
Y ] =

√
λΓ(1.5)Γ

(
γ−1 − 0.5

)
√
γΓ(γ−1)

. [units: field] (23)
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The variance of the envelope can then be obtained from the intensity mean, E[Y ] = E[X2] =
λ/(1 − γ) and (23), via Var{X} = E[X2] −(E[X])2. These combine to produce the ratio of the
squared average envelope to its variance,

d =
E[X]2

Var{X}
=

[
4γΓ2

(
γ−1

)
π(1− γ)Γ2(γ−1 − 1/2)

− 1

]−1

= g(γ) [unitless: normalized power]. (24)

The envelope MoM estimator is then obtained by replacing the mean and variance of the envelope
by the corresponding sample moments and solving (24) for γ.

The moment equations used to form (24) only require γ < 1, which implies errors in the sample
moments can cause shape-parameter estimates exceeding 0.5 even when the true value is less. This
approach also suffers from the same problem as the K-distribution where any moment-ratio estimate

d ≥ dmax =
π

4− π
[unitless: normalized power] (25)

results in non-invertible moment equations. Similar to the intensity MoM estimator, this is more
likely to occur when γ is near zero, but is not unlikely for higher values of γ when N is small. The
estimate of the scale parameter follows (22).

The deficiencies of this estimate include (i) it can produce shape parameter estimates in the
infinite-variance regime (γ ≥ 0.5) and (ii) it can fail to produce an estimate.

3.3.1 Solving the envelope moment-ratio equation

In most scenarios, the following approximation can be used to solve the envelope moment-ratio
equation d = g(γ) in (24) for γ,

γ = g−1(d) ≈
(
1− d

dmax

)[
1− 8

19

(
d

dmax

)
+

26

53

(
d

dmax

)2

− 3

14

(
d

dmax

)3
]
. (26)

The approximation was developed as a least-squared-error polynomial fit to g−1(d) subject to an
exact fit at d = 0 where γ = 1 and d = dmax where γ = 0. The relative absolute error is less than
0.4%, which will generally be much smaller than the standard deviation of the parameter estimator.
The analysis presented in this report uses (26) without any refinement.

When greater accuracy is required, the following Newton-Raphson iteration can be applied,

γ̂ := γ̂ − g(γ̂)− d

g′(γ̂)
. (27)

This requires the derivative of (24) with respect to γ, which is

g′(γ) =
−4πΓ2

(
γ−1

)
Γ2
(
γ−1 − 1/2

){
1 + 2

(
1− γ−1

)[
ψ
(
γ−1

)
− ψ

(
γ−1 − 1/2

)]}
[4γΓ2(γ−1)− π(1− γ)Γ2(γ−1 − 1/2)]2

, (28)

where ψ(·) is the digamma function. To account for values of γ near zero, it is prudent to evaluate
the gamma functions indirectly through routines providing the logarithm of the gamma function.
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Note that (24) can be written as

g(γ) =

[
4(γ−1 − 1)Γ2

(
γ−1 − 1

)
πΓ2(γ−1 − 1 + 1/2)

− 1

]−1

, (29)

which is the same as [8, eq. 2] when α = γ−1 − 1. This implies that the K-distribution shape
parameter α can be approximated by

α ≈
(
1− d

dmax

)−1
[
1− 8

19

(
d

dmax

)
+

26

53

(
d

dmax

)2

− 3

14

(
d

dmax

)3
]−1

− 1 (30)

when using envelope-based MoM estimators.

3.4 Method of moments: Bayesian posterior mean

The approach presented in [8] for the development of a Bayesian estimator of the K-distribution
shape parameter is applied here to estimate the GPD shape parameter. Taking the moment ratio d in
(24) as the parameter to be estimated, the Bayesian construct is based on the posterior distribution
of d given the data,

f(d|data) =
f(data|d)
f(data)

fpri(d), (31)

which is formed by Bayes’ rule from the distribution of the data given d and a prior distribution,
fpri(d). In [8], the shape of f(data|d) when taken as a function of d was approximated as being
gamma distributed with shape parameter at and scale parameter bt. As described in [8, Sect. II.C-
1], the gamma-distribution parameters are obtained through moment matching to an error-based
characterization of d given the data. The posterior mean estimate of d was then restricted to the
interval allowing inversion of the envelope moment equation with a uniform prior distribution.

Suppose the GDP shape parameter is required to be on the interval (γ0, γ1), which is nominally
set to [0, 0.5).6 Noting that d = g(γ) is a monotonically decreasing function of γ, this results in the
interval (dmin, dmax) for the moment ratio where

dmin = g(γ1) =
π2

16− π2
[unitless: normalized power] (32)

when γ1 = 0.5 and dmax = g(γ0) = π/(4− π) as described in (25) when γ0 = 0. In scenarios where
γ1 is set to one, dmin = 0.

Following [8], the prior distribution on the moment ratio is assumed to be uniform on the interval
(dmin, dmax). This has the effect of altering [8, eq. 12] to

fD(d|t) =
dat−1e−d/bt

Γ(at)b
at
t [FG(dmax|at, bt)− FG(dmin|at, bt)]

, (33)

6Whether or not the boundary of the interval is included depends on the prior PDF and the type of estimator.
Although γ̂ = 0 is a viable estimate for the present application, the posterior-mean estimator shown in (34) is very
unlikely to produce an estimate on either boundary.

TR 2401 15



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

where FG(x|α, β) is the gamma cumulative distribution function (CDF) with shape α and scale β
and at and bt are the gamma-distribution parameters approximating the posterior distribution on
the moment ratio.

The Bayesian posterior mean estimate of the moment ratio, when restricted by the prior PDF
on γ, is the mean of the PDF in (33), which is

d̂ = atbt
FG(dmax|at + 1, bt)− FG(dmin|at + 1, bt)

FG(dmax|at, bt)− FG(dmin|at, bt)
[unitless: normalized power]. (34)

An estimate of the GPD shape parameter is then obtained from d̂ as described in Sect. 3.3.1.
MATLAB® code implementing this technique can be found in App. B.5.

When computational effort is a limiting factor, the numerator in (34) can be simplified through
integration by parts to remove one set of incomplete-gamma-function evaluations,

d̂ = atbt

{
1−

datmaxe
−dmax/bt − datmine

−dmin/bt

atΓ(at)b
at
t [FG(dmax|at, bt)− FG(dmin|at, bt)]

}
[unitless: normalized power]. (35)

3.5 Performance analysis

The results of a simulation analysis of the GPD shape-parameter estimators is performed when
the estimate is formed from N = 100, 200, 500, or 1000 independent intensity samples. The error
analysis employed 104 trials. To determine the efficiency of the estimators, the square root of
the Cramér-Rao lower bound (CRLB) on the variance of unbiased estimators of γ when the scale
parameter is also unknown is shown along with the estimator RMSE and standard deviation. The
CRLB is obtained from [6, eq. 14],

Var{γ̂} ≥ (1 + γ)2

N
. (36)

As seen in Fig. 6, the MLE achieves the expected efficiency asymptotically as N increases. The
MoM estimators are biased near one or both boundaries of the viable shape parameter region (i.e.,
γ ∈ [0, 0.5)), which adversely impacts their RMSE. Of the two estimators always providing viable
shape-parameter estimates, the Bayesian envelope MoM (purple line) is a compelling choice for
small sample sizes. The mixed Bayesian envelope MoM estimator (which only applies the prior
when the envelope MoM estimate is not in the valid region) is competitive for large sample sizes
and allows trading an increase in standard deviation for a smaller bias near the boundaries.
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Figure 6: Error analysis for the estimators of the GPD shape parameter from 104 simulation trials.
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4 Design SNR for a (Pd, Pf) specification in GPD clutter

A common performance measure in the analysis of a sonar system is the SNR at which it
achieves a desired detection performance. When the performance is quantified by the probabilities
of detection (Pd) and false alarm (Pf ) in a single sonar resolution cell, the corresponding design
SNR is the detection threshold term (DT [units: dB]) in the sonar equation. This design SNR
is evaluated by first obtaining the detector decision threshold (h) achieving the design Pf for the
given background model and then finding the SNR achieving the design Pd for the detector using
h. This process requires definition of the detector and statistical models for the signal and noise.
The noise here is assumed to follow the generalized Pareto distribution (GPD) and the standard
deterministic and Gaussian-fluctuating signals will be evaluated. The detectors considered include
using a single intensity sample (Sect. 4.1) and a detector integrating multiple independent intensity
samples (Sect. 4.2).

For these detectors, one or both of the forward models for Pf and Pd involve integral equations,
necessitating at least one numerical inversion of the functions to obtain first the decision threshold
and then the design SNR. Fortunately, accurate approximations to the design SNR can be obtained
in many scenarios through the approach described in [9], which entails approximating Pd by that
for a signal in a benign background while using the correct detector decision threshold for the
heavier-tailed clutter. For a single intensity in GPD clutter, this results in very simple and yet
accurate approximations (Sect. 4.1.3). For the integrated-intensity detector, however, an additional
approximation (Sect. 4.2.3) is required to obtain the detector decision threshold as a function of Pf ,
the number of independent intensities being integrated, and the GPD shape parameter. Although
the additional error reduces the region over which the DT approximation is accurate, it will still be
useful in many scenarios. MATLAB® code implementing the approximations to DT in GPD clutter
can be found in App. C.1.

The simple approximations presented in Sects. 4.1.3 and 4.2.1 provide the design SNR as a
function of the (Pd, Pf ) specification and the shape parameter of the clutter distribution. In scenarios
where the design SNR for a particular system is known in a benign background, an approach for
approximating how much it increases in a clutter-dominated background is presented in Sect. 4.3.
Using the benign-background approximation to Pd described above, the increase in the design SNR
is shown to be approximately the decibel increase in the detector decision threshold required to
maintain the Pf specification. The approximation is quite accurate when Pd = 0.5 for both the
deterministic and Gaussian-fluctuating signals. Given the ubiquity of clutter, this is particularly
useful when system data are available to determine the decision thresholds required to meet the Pf
specification under different levels of clutter severity.

As might be anticipated, the results presented in this section illustrate that a higher SNR is
required to maintain the (Pd, Pf ) design operating point when the background becomes heavier
tailed. It is important to recall that this analysis only pertains to systems that adjust their decision
thresholds to maintain a constant cell-level Pf as the clutter background varies in severity over time
and space (e.g., using the statistical normalizer described in [19]). For systems with fixed decision
thresholds, Pf increases or decreases with the severity of the clutter and the design SNR (DT) and
Pd are predominantly driven by the signal model and the fixed detector decision threshold.

As a final note, the analysis presented in this report assumes perfect normalization of the detector
decision statistics. Although approximations exist for the SNR loss incurred by cell-averaging
constant-false-alarm-rate (CFAR) normalizers in a benign background [1, Sect. 8.6.1.3], an extension
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to heavy-tailed clutter is quite difficult.

4.1 Single-intensity detectors

Consider a detector testing a single intensity sample for the presence of an active-sonar echo
from an object of interest (OOI). If Y [unitless: normalized power] is the perfectly normalized
intensity and the detector decision threshold is hc [unitless: normalized power], then the detection-
performance probabilities are

Pf = Pr{Y ≥ hc|H0} and Pd = Pr{Y ≥ hc|H1} , (37)

where H0 is the noise-only hypothesis and H1 is the signal-present hypothesis. The design SNR
achieving a (Pd, Pf ) specification is obtained by inverting (i.e., solving) the first equation for hc as
a function of Pf and then using it while inverting the second equation to find the SNR achieving
the desired Pd.

In order to avoid confusion, terms related to a clutter-dominated background will be identified
using a subscript ‘c’. For example, the detector decision threshold in (37) is hc rather than h. In
a benign background, the subscript ‘g’ (for Gaussian) will be employed when necessary to avoid
ambiguity.

4.1.1 Detector decision threshold in GPD clutter

For GPD clutter, the detector decision threshold for testing a single intensity sample,

hc =
1− γ

γ

(
1

P γf
− 1

)
[unitless: normalized power], (38)

is obtained directly from (4) by setting λ = 1 − γ so the noise intensity has unit mean, as if
the normalization were perfect. As γ → 0, this decision threshold tends to that for the nominal
exponentially-distributed intensity, hc → − logPf .

4.1.2 Integral equations for Pd

The instantaneous intensity when signal is present amid GPD clutter can be described as

Y =

∣∣∣∣∣Aejψ +
Ṽ√
W

∣∣∣∣∣
2

[units: power], (39)

where A and ψ are, respectively, the amplitude and phase of the signal, Ṽ is a zero-mean complex
Gaussian random variable with power λ and W is gamma distributed with shape parameter 1/γ
and scale parameter γ. In terms of the SIRV model described in Sect. 2 for the GPD clutter,
Yo = |Ṽ |2 is the instantaneous intensity in the numerator of (1). Setting λ = 1 − γ so the average
noise intensity equals one, which represents perfect normalization, implies that E[A2] = s where s
is the linear-quantity SNR.

Conditioning on W implies that Ṽ /
√
W is a zero-mean complex-Gaussian distributed random

variable with power (1− γ)/W . This allows characterizing Y through the traditional deterministic
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and Gaussian-fluctuating signal models. For the Gaussian-fluctuating signal, Aejψ is a zero-mean
complex Gaussian random variable with power s. Adding this to the noise while conditioning on
W causes Y to follow an exponential distribution,

Y |W ∼ Expon
{
s+

1− γ

W

}
, (40)

with mean s + (1 − γ)/W . The probability of detection can then be obtained by removing the
conditioning on W ,

Pd = EW [Pr{Y ≥ hc|H1,W}] (41)

=

∫ ∞

0
e−hc/[s+(1−γ)/w]fW (w) dw, (42)

where

fW (w) =
wγ

−1−1 e−w/γ

Γ(γ−1) γγ−1 for w ≥ 0 (43)

is the gamma PDF for W .

A deterministic signal in a benign background leads to an instantaneous intensity proportional
to a non-central chi-squared distributed random variable with two degrees of freedom. When con-
ditioned on W , the instantaneous intensity in (40) can therefore be described by

T = 2W
1−γY ∼ χ2

2,δ (44)

where the non-centrality parameter is

δ =
2sW

1− γ
. (45)

The probability of detection is then

Pd = 1−
∫ ∞

0
Fχ2

2,δ

(
2whc

1− γ

)
fW (w) dw (46)

where Fχ2
2,δ
(t) is the CDF of the non-central chi-squared distribution with 2 degrees of freedom and

non-centrality parameter δ.

4.1.3 Design SNR using a Gaussian-noise approximation

For moderate to high SNR, a useful approximation to the probability of detection can be obtained
by assuming the signal exists in a benign background rather than heavier-tailed clutter. This was
the approach taken in [9] to obtain the design SNR for a K-distributed background. Its efficacy
was explained in [1, Sect. 7.5.6.1] by the rapid decay of the signal-plus-noise complex-envelope
characteristic function compared to that of the noise alone.

The approximation is known to work quite well for Gaussian-fluctuating signals and improves
with SNR. It can be accurate near the mean of the signal-plus-noise distribution for a deterministic
signal, but has trouble in the upper or lower tails. These expectations are seen in the comparisons
shown in Figs. 7–10 between the lines in color and the gray dashed lines. The largest errors occur
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for the most extreme clutter (γ = 0.44) and the highest Pf , which has the lowest detector decision
threshold for a given γ. However, the errors are small enough for the approximation to be of use in
most practical scenarios.

Also shown in Figs. 7–10 (dots) is an approximation based solely on the change in the decision
threshold required to maintain the Pf specification. As described in Sect. 4.3, this can be accurate
for the Gaussian-fluctuating signal or, when Pd is near 0.5 for a deterministic signal. Given the
simplicity and greater accuracy of the benign-background approximations found in this section, the
change-in-threshold approximations are primarily useful when starting with a design SNR estimated
from system data in a benign background (see Sect. 4.3).

Approximation for a Gaussian-fluctuating signal: The forward model of Pd for a Gaussian-
fluctuating signal in a benign background is simply

Pd = e−h/(1+s), (47)

where s is the linear-quantity SNR and h is the normalized-intensity detector decision threshold.
The benign-background approximation to Pd simply replaces h with hc from (38), which increases
as the clutter becomes heavier tailed. Solving for SNR and converting to decibels leads to the
benign-background approximation to the design SNR for a Gaussian-fluctuating signal in GPD
clutter,

DTc ≈ 10 log10

[
−hc

logPd
− 1

]
(48)

= 10 log10

{
1− γ−1

logPd

(
1

P γf
− 1

)
− 1

}
[units: dB]. (49)

As seen in Figs. 7 & 8, the approximation is very accurate, with the largest error of 0.03 dB observed
when γ = 0.44, Pd = 0.5, and Pf = 10−2.

Using the approximation in (49), it can be shown that when Pf is small (so the decision threshold
is appropriately large), the increase in the design SNR induced by an order-of-magnitude reduction
in Pf is approximately

Increase in DT ≈ 10γ + e−10γ · 10 log10
(
1 +

log(10)

γf

)
[units: dB], (50)

where γf is the decision threshold for an integrated-intensity detector as defined in (58). For a single
intensity sample (M = 1), γf = − log(Pf ). When γ is near zero, the latter term dominates and
enforces a lower limit that tends to zero as Pf gets smaller. A useful approximation when γ is larger
can be obtained from the first term, which implies an order-of-magnitude improvement in Pf has a
cost of an increase in DT of 10γ decibels, which can be significant when the clutter is severe. Because
this approximation relies on hc being large, it applies to both deterministic and Gaussian-fluctuating
signals and also appears to have reasonable accuracy for an integrated-intensity detector.

Approximation for a deterministic signal: Although the statistical distributions for a deter-
ministic signal in a benign background are not as simple to describe as the Gaussian-fluctuating
signal, Albersheim’s [20] or Hmam’s [21] approximations to the design SNR can be applied to obtain
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Figure 7: Design SNR and its approximations as a function of the probability of false alarm when
Pd = 0.5 for a Gaussian-fluctuating signal in GPD clutter with different shape parameters.
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Figure 8: Design SNR and its approximations as a function of the probability of false alarm when
Pd = 0.9 for a Gaussian-fluctuating signal in GPD clutter with different shape parameters.
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Figure 9: Design SNR and its approximations as a function of the probability of false alarm when
Pd = 0.5 for a deterministic signal in GPD clutter with different shape parameters.
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Figure 10: Design SNR and its approximations as a function of the probability of false alarm when
Pd = 0.9 for a deterministic signal in GPD clutter with different shape parameters.
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an accurate approximation for clutter-dominated backgrounds. Hmam’s approximation is employed
here owing to its formulation in terms of the detector decision threshold. Although application of
Albersheim’s equation can be performed by setting Pf = e−hc , the greater accuracy of Hmam’s
equation is preferred.

From [1, pg. 79, eq. 2.87], Hmam’s equation for the design SNR (per intensity sample) when
integrating M independent intensities is

DT ≈ −10 log10M + 10 log10

(√h− M

2
+ 0.25 −A

)2

− M

2
+ 0.25

 [units: dB], (51)

where h = γ̃−1(1− Pf ;M) for a benign background,

A = sign(0.5− Pd)
√
0.85616 logeB (52)

and

B =
0.19√

0.819025 + 1.5206Pd(0.9998− Pd)− 0.905
. (53)

Note that (51) represents the average SNR required in each of the M intensities being integrated.

When M = 1, this simplifies to

DT ≈ 10 log10

[(√
h− 0.25−A

)2
− 0.25

]
[units: dB], (54)

with h = − logPf for a benign background. Using (38) for the detector decision threshold produces

DTc ≈ 10 log10

(√1− γ

γP γf
− 1

γ
+

3

4
−A

)2

− 0.25

 [units: dB] (55)

as an approximation to the design SNR for a deterministic signal in GPD clutter.

With the understanding that the benign-background approximation works best near the mean
of the signal-plus-noise distribution for a deterministic signal, it is not surprising that (55) works
quite well when Pd = 0.5, as can be seen in Fig. 9 where the largest error is 0.07 dB. The accuracy
of the approximation degrades as the Pd specification loosens or tightens, as seen in Fig. 10 where
Pd = 0.9 and the maximum error rises to 0.28 dB. Similar to the Gaussian-fluctuating signal, these
errors occur when γ = 0.44 and Pf = 10−2 and the approximation improves as either of these
parameters decreases. As such, the approximation in (55) will be useful in most practical scenarios.
For situations where the performance specification entails a large value for Pf and a value of Pd not
near 0.5, the approximation can be refined numerically using the integral equation in (46).

Examining (51), it can be seen that when h is large, the effect of A and therefore Pd is muted.
When Pd = 0.5, A = 0 and it decreases to −0.9 when Pd = 0.9 and −1.64 when Pd = 0.99. In
contrast, the radical term in (51) will be significantly larger when Pf is small and γ increases away
from zero (e.g., it is over 20 when Pf = 10−6 and γ = 0.44). The impact of this on the design
SNR can be seen in Figs. 9 & 10 where there is little difference between the Pd = 0.5 and 0.9
specifications when Pf is small and γ is large. Conversely, this implies a small change in SNR at
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these operating points can lead to a large change in Pd (i.e., the transition curve is very sharp).
This sensitivity can be explained by considering the complex envelope in a benign background,
Aejψ + Ṽ , which can be obtained from (39) by setting W = 1. Given perfect normalization and
a deterministic signal, A =

√
s and E

[
|Ṽ |2

]
= 1. The joint PDF of the real and imaginary parts

is a symmetric Gaussian bell-shaped curve centered at
√
sejψ. Because the deterministic signal

only affects the mean, the variance of the real or imaginary components arises solely from the
noise, which is Var{Real{Ṽ }} = Var{Imag{Ṽ }} = 1/2 after perfect normalization. When h is
large, the SNR required to achieve Pd = 0.5 is also large (from Hmam’s equation in (54), it is
DT ≈ 10 log10(h− 0.5)). As such, it takes very little change in SNR to move the complex-envelope
PDF from being mostly within the circle representing the decision threshold (i.e., one with radius√
h) to being mostly outside of it. An example of this transition, where a change of less than one

decibel transforms a low Pd into a high one, is shown in Fig. 11 for γ = 0.3 and Pf = 10−8. This
effect is not observed in Figs. 7 & 8 for the Gaussian-fluctuating signal because the spread of the
complex-envelope PDF increases with SNR. Although scenarios exhibiting the sensitivity seen in
Fig. 11 are unlikely (owing to the use of a very large decision threshold), it strengthens the argument
for not using the deterministic signal at high SNR.
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Figure 11: Representation of the complex-envelope PDF (95% coverage) for a deterministic signal
in Gaussian noise at the design SNRs required to meet Pd = 0.1, 0.5, and 0.9 when Pf = 10−8 in
GPD clutter with shape parameter γ = 0.3. The signal phases are chosen arbitrarily to separate
the distributions on the figure.
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4.2 Integrated-intensity detectors

When the effects of propagation and scattering from the object of interest (OOI) spread an
active-sonar echo in time, it is common to apply post-matched-filter integration (PMFI) to recoup
some of the spreading losses [1, Sect. 8.8]. The resulting detector decision statistic can be modeled
by the sum

U =
M∑
m=1

Ym [units: power], (56)

where Y1, . . . , YM are independent instantaneous intensity samples and M is approximately the
product of the integration time and the signal bandwidth. This decision statistic can also be
used to represent track-level detection when summing intensities over M observations (although it
assumes perfect measurement-to-track assignment).

In a benign background, the standard signals in an integrated-intensity detector are analyzed
using chi-squared and non-central-chi-squared distributions where the degrees-of-freedom parameter
increases from two to 2M . Analysis of this detector in clutter-dominated backgrounds, however, is
quite difficult. Although some approximations are accessible [1, Sect. 7.5.6.4], they do not provide
the accuracy required when evaluating the design SNR from a detection operating point.7 Numerical
approaches for evaluating Pf and Pd requiring the equivalent of a two-dimensional numerical integral
are presented in Sects. 4.2.2 & 4.2.4, respectively. They are employed here to assess the accuracy
of the benign-background approximations to the design SNR in Sect. 4.2.1, which have a similar
efficacy to what was seen in Sect. 4.1.3 for a single intensity sample.

The techniques found in this section are employed in Figs. 12 and 13, which extend the example
found in [1, pg. 81, Fig. 2.16] to account for a clutter-dominated background when Pd = 0.5 and 0.9,
respectively, with Pf = 10−4. These results illustrate, as might be expected, that the increase in
the design SNR with clutter tail heaviness persists as M increases. The dots in the figures are the
precise result obtained through numerical inversion using the techniques described in Sects. 4.2.2
& 4.2.4. The lines exploit an empirical approximation to the decision threshold for M ≥ 2 that is
described in Sect. 4.2.3 (see App. C.4 for a MATLAB® implementation) and the benign-background
approximations to Pd described in Sect. 4.2.1. The combined approximations are very simple to
evaluate and yet have maximum absolute error less than 0.1 dB in the cases shown in Figs. 12 and
13, where their efficacy is readily apparent.

4.2.1 Design SNR using a Gaussian-noise approximation

The approach presented in Sect. 4.1.3 for approximating Pd in a clutter-dominated background
by that obtained for a benign background can also be applied to a detector integrating independent
and identically distributed intensities. In the benign background, the decision statistics become
proportional to central or non-central chi-squared random variables with 2M degrees of freedom.
Similar to the single-intensity case presented earlier, an exact solution can be obtained for the
Gaussian-fluctuating signal and Hmam’s equation can be used for the deterministic signal.

The design SNR for a Gaussian-fluctuating signal in a benign background when summing M

7In addition to accuracy issues, approximations for the GPD obtained by moment matching up to the kth intensity
moment restrict γ to be < 1/k.
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Figure 12: Design SNR as a function of the number of independent intensity samples being integrated
(M) for for a deterministic signal in GPD clutter with different shape parameters when Pd = 0.5
and Pf = 10−4.

independent and identically distributed instantaneous-intensity samples is

DTg = 10 log10

[
γf
γd

− 1

]
[units: dB], (57)

from [1, pg. 77, eq. 2.81] where

γf = γ̃−1(1− Pf ;M) and γd = γ̃−1(1− Pd;M) (58)

are formed from the functional inverse of the normalized incomplete gamma function.8 WhenM = 1,
these simplify to γf = − logPf and γd = − logPd.

Noting that the detector decision threshold in a benign background is hg = γf , the approximation
to the design SNR in a clutter-dominated background is simply

DTc = 10 log10

[
hc

γd
− 1

]
[units: dB], (59)

8See [1, pg. 77, eq. 2.80 and pg. 293] for more details on the normalized incomplete gamma function and its
functional inverse. The functional inverse can be evaluated in MATLAB® using the functions gammaincinv(1-Pd,M)
or gaminv(1-Pd,M,1), for example, for γd. A useful approximation is also presented in (81).
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Figure 13: Design SNR as a function of the number of independent intensity samples being integrated
(M) for for a deterministic signal in GPD clutter with different shape parameters when Pd = 0.9
and Pf = 10−4.

where hc is the linear-intensity decision threshold applied to U in (56).

Using Hmam’s equation [21] as found in (51) with the appropriate decision threshold produces
the approximation to the design SNR for a deterministic signal in GPD clutter when summing M
independent intensities,

DTc ≈ −10 log10M + 10 log10

(√hc −
M

2
+ 0.25−A

)2

− M

2
+ 0.25

 [units: dB], (60)

where the dependence on Pd enters through A as shown in (52) & (53). Note that both (59) and
(60) describe the SNR in a single intensity sample.

The simplicity of these two approximations belies the complexity encountered when applying
them, primarily owing to the difficulty in accurately obtaining the detector decision threshold as a
function of Pf . The integral equations of the forward model relating hc to Pf found in Sect. 4.2.2
must be evaluated numerically to obtain hc as a function of the Pf specification. This functional
inversion was avoided in the following assessment of the accuracy of (59) and (60) by using the
forward model to obtain a number of pairs (hc, Pf ) for which Pf was on the interval [10−6, 10−2]
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with γ taking values every 0.05 from 0.05 to 0.45 and M taking even values from 2 to 20. The values
of hc were then used to approximate the design SNR using (59) or (60), which then initialized a
search to find the precise value computed from the integral equations for Pd described in Sect. 4.2.4.
The signal was modeled as either deterministic (ρ = 0 in the Rician model used in Sect. 4.2.4) or
Gaussian-fluctuating (ρ = 1) and the design values of Pd were 0.5 or 0.9. Plots of the design SNR
and its approximation as a function of Pf were similar to those seen Figs. 7–10.

To summarize the errors, the design SNRs were interpolated onto a common set of Pf values in
the range [10−6, 10−2]. The maximum absolute errors observed in the analysis are then shown in
Fig. 14 (blue lines) as a function Pf . When using the exact threshold, the worst error occurred when
γ = 0.45 and Pf = 10−2. Although the errors are larger than those typically seen in Sect. 4.1.3 for
a single intensity, restricting the analysis to cases for which γ ≤ 0.4 and Pf ≤ 10−3 keeps the error
under 0.1 dB.
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Figure 14: Maximum absolute error in the design SNR predicted using a benign-background as-
sumption for Pd over the test cases evaluated with an exact detector decision threshold (blue lines)
or an approximate threshold.

The other lines in Fig. 14 characterize the maximum error observed when incorporating an
additional approximation for the detector decision threshold (h) using the empirical formula de-
scribed in Sect. 4.2.3. Approximating the decision threshold clearly increases the maximum error
to a few tenths of a decibel, although it remains below 0.1 dB for Pf ∈ [10−6, 10−3], γ ≤ 0.4, and
M ≤ 10. Given the simplicity of the combined approximation, this level of accuracy will generally
be a worthwhile compromise when compared to the effort required to achieve the more accurate
result.
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4.2.2 Integral equations for Pf

In general, the PDF and CDF of the sum of scaled F -distributed random variables (for which
the GPD is a special case) can be described using complicated functions [22] that might be difficult
to evaluate numerically (e.g., multiple infinite summations, potentially with alternating signs). The
approach taken here is to describe Pf through a single integral when M = 2, a double integral
when M = 3, and an integral of a function containing an integral for M > 3. Evaluation of Pf can
then be accomplished with no more than the equivalent of a two-dimensional numerical integral,
irrespective of M .

The PDF of the sum of independent random variables is the convolution of the PDFs of the
summands. The CDF of the sum can similarly be shown to be the convolution between the CDF
of one of the random variables and the PDFs of the others. For example, if U = X + Y and X and
Y are independent, then the CDF of U is

FU(u) =

∫
FX(u− y)fY (y) dy = FX(u) ∗ fY (u), (61)

where ∗ is the convolution operator. When summing two independent and identically distributed
GPD random variables with shape γ and scale λ, this results in

Pf = 1− FU(h) =
1(

1 + γh
λ

)γ−1

1 + γh/λ∫
0

γ−1(
1− y

1+γh/λ

)γ−1

(1 + y)γ
−1+1

dy

 , (62)

which is straightforward to evaluate numerically.

The CDF of the sum U = X + Y + Z of three independent random variables can be obtained
by iterating (61),

FU(u) = FX(u) ∗ fY (u) ∗ fZ(u) =
∫∫

FX(u− y − z)fY (y)fZ(z) dy dz. (63)

Note that for non-negative random variables, the integral over y is restricted to the interval (0, u)
and the integral on z to (0, u− y) in order for the arguments of the PDFs and CDF to be ≥ 0.

The convolution approach, which requires an M − 1 dimensional integral when summing M
independent intensities, is clearly not reasonable for M > 3. In these scenarios Pf can be obtained
using characteristic functions. The characteristic function of a GPD random variable is

ΦY (ω) = E
[
ejωY

]
=

∫ ∞

0
ejωyfY (y) dy

=

∫ ∞

0

ejωy

λ
(
1 + γ

λy
)γ−1+1

dy (64)

= j

∫ ∞

0

e−ωr

λ(1 + jrγ/λ)γ
−1+1

dr (65)

using the PDF in (2). The change of variables from y to r = y/j (with j =
√
−1) in (65) converts the

complex envelope in the numerator to an exponential decay, which simplifies numerical evaluation.
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Recalling that convolution in one domain of a Fourier transform equates to a product in the
other domain, it can be seen that summingM independent and identically distributed GPD intensity
samples as done in (56) equates to raising the characteristic function in (65) to the Mth power,

ΦU (w) =[ΦY (w)]
M . (66)

This form is particularly useful when the intensity sum is formed using correlated observations and
leads to a non-integer value of M .

The exceedance distribution function (EDF) of the random variable U , which is one minus the
CDF, is then obtained from its characteristic function using [1, pg. 653, eq. 9.101],

Pr{U > u} = 1− FU (u) =
1

2
+

1

π

∫ ∞

0
Imag

{
ΦU (ω)

ω
e−jωu

}
dω. (67)

The combination of (67) and (65) has the computational requirements of a two-dimensional integral,
as is the case for M = 3 in (63). This demanding computational requirement in the forward model
of Pf presents the largest impediment to implementing the detector at a given Pf and subsequently
finding the design SNR achieving the Pd specification.

It is also possible to exploit a discrete-Fourier-transform (DFT) approximation to the integral
in (67), as done in [23] (also see [1, Sect. 9.2.7.2 & App. 9.A]). This approach is most likely less
computationally intensive than using a generic numerical integration routine. However, the generic
approach avoids the need to check that each of numerous variations evaluated here (across γ and
M) did not suffer from the aliasing at large values that can affect the DFT-based approach. When
evaluating a specific scenario or if smaller values of Pf are of interest, the DFT-based routine is
recommended or [24] when Pf is extremely small.

MATLAB® code for evaluating Pf using the techniques described in this section can be found
in App. C.3.

4.2.3 Empirical inversion of Pf to find the decision threshold

Given the computational effort required to invert the relationship between the decision threshold
and the probability of false alarm for an integrated-intensity detector in heavy-tailed noise, a simple
approximation to the inversion was obtained empirically through a least-squared-error (LSE) fit to
a linear model based on the modified parameters: x1 = Φ−1(1− Pf ), x2 = γ, and x3 = logM . The
linear model was applied to the function

y = log

(
hM
h1

− 1

)
, (68)

where hM is the linear intensity threshold when summing M independent intensities. This mapping
compresses the increase in the threshold from M = 1 when it is large and emphasizes it for small M .
The modified parameters (x1, x2, x3) and a sufficient number of their powers and cross terms were
used in a Maclaurin-series expansion of the multi-dimensional function to achieve an estimate with
an acceptable maximum absolute error over a useful range of input parameters. For some values
of Pf and M , the function was not monotonic in γ, so it was necessary to apply the LSE model
to four intervals spanning γ ∈ [0, 0.45]. This allowed keeping the maximum absolute error over
the cases evaluated below 0.15 dB while accounting for rounding the coefficients to four significant
digits. MATLAB® code implementing the approximation is found in App. C.4.
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The range of validity for the approximation is:

Pf ∈ [10−6, 10−2], γ ∈ [0, 0.45], and M ∈ [2, 20]. (69)

The LSE analysis was performed within these intervals for 21 equally-spaced values in x1, for
M = 2, 3, 4, 5 and even numbers up to M = 20, and for 19 values of γ every 0.025. The accuracy
of the approximation is illustrated in Fig. 15 for γ = 0.2 where the maximum absolute error is less
than 0.1 dB, even for the values of M = 7, 9, 13, and 19, which were not part of the LSE fitting.
For a scenario where the decibel change in the decision threshold is indicative of the increase in the
design SNR (see Sect. 4.3), the error in the approximation is representative of the additional error
in DT. The smoothness of the function as the modified parameters vary between the samples used
in the LSE analysis (e.g., see Fig. 15 for variation with Pf ) suggests the errors on the interior of
the above regions will be similar in size to those at the points evaluated. Use of the approximation
outside of the intervals noted in (69) is not recommended.
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Figure 15: Detector decision threshold as a function of the probability of false alarm when integrating
M independent intensity samples dominated by GPD clutter with shape parameter γ = 0.2.

4.2.4 Integral equation for Pd

Extending the definition of Y in (39) to represent a Rician signal in GPD clutter leads to its
characterization as the scale of a non-central chi-squared-distributed random variable,

T = 2
µ+ρsY ∼ χ2

2,δ, (70)
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when conditioned on W , where s is the total SNR, ρ is the fraction of random signal power,
µ = (1− γ)/W , and the non-centrality parameter is

δ =
2(1− ρ)s

µ+ ρs
. (71)

Setting ρ = 1 yields the Gaussian-fluctuating signal, whereas ρ = 0 produces a deterministic signal.
Letting s = 0 produces the noise-only distribution.

Using the characteristic function of the non-central chi-squared distribution from [1, pg. 297] for
T , it is straightforward to show that the characteristic function of Y conditioned on W is

ΦY |W (ω|W ) =
1

1− jω
(
1−γ
W + ρs

) exp

 jω(1− ρ)s

1− jω
(
1−γ
W + ρs

)
 . (72)

Removing the conditioning on W then produces the characteristic function of Y ,

ΦY (ω) = E
[
ejωY

]
=

∫ ∞

0
ΦY |W (ω|W = r)fW (r) dr, (73)

where the PDF of W is as shown in (43) and r is used as a variable of integration to avoid confusion
between the lower-case w and ω, the latter of which is the argument of the characteristic function.

The probability of detection is then obtained by raising ΦY (ω) to the Mth power, as done in
(66), and then using it in (67). Although a single evaluation of Pd is not prohibitive, the effort
required to solve for the design SNR generally is. Fortunately, the approximations presented in
Sect. 4.2.1 are accurate enough in most cases to not require any direct evaluation of Pd in practice.

4.3 Adjusting a measured design SNR to account for clutter

In some applications the design SNR is obtained through the analysis of OOI measurements
from a particular system operating in a benign background and it is desired to adjust it to account
for a background dominated by clutter. Application of the techniques described in Sects. 4.1 &
4.2 requires the (Pd, Pf ) specification corresponding to the system’s detector decision threshold
and the design-SNR analysis. If the analysis was performed using the minimum-detectable-level
(MDL) criteria, then Pd = 0.5. However, the corresponding value of Pf is often not known (e.g.,
see the auditory detection approach to defining a design SNR in [25, Sect. 4.1.3]). Assuming
statistical models for the signal and noise, as was done in [26], provides a means to obtain an
equivalent Pf given Pd and the design SNR. It is then straightforward to use the previously described
techniques to obtain the design SNR in a clutter-dominated background. Although this approach
is straightforward, it still requires accuracy in the models of the noise background and estimation
of the GPD shape parameter.

Given the ubiquity of clutter compared to the dearth of OOI measurements, an alternative
approximate approach can be obtained by assessing how much the detector decision threshold must
be increased in a clutter-dominated background in order to maintain the same probability of false
alarm as that observed in the original system configuration in the background conditions for which
it was designed. The impact of the clutter is dictated by the data in terms of how the new detector
decision threshold affects Pd. As seen here, the decibel change in the detector decision threshold is
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also a useful approximation to the clutter-induced increase in the design SNR for an MDL scenario
under both the deterministic and Gaussian-fluctuating signal models.

The analysis presented in this section exploits an approximation to detection threshold that
decomposes it into the sum of components related to the Pf and Pd specifications. For example,
from (57), the detection threshold for an integrated-intensity detector with a Gaussian-fluctuating
signal in Gaussian noise is

DTg = 10 log10

[
γf
γd

− 1

]
≈ 10 log10(γf )− 10 log10(γd) [units: dB]. (74)

The approximation in (74) assumes that the detector decision threshold (hg = γf ) is large compared
to γd, which equates to Pd ≫ Pf . For a single intensity sample, this simplifies to

DTg ≈ 10 log10(− logPf )− 10 log10(− logPd) [units: dB]. (75)

The first term in the approximation is precisely the logarithmic-quantity decision threshold for
a detector with perfect normalization. When the approximation is accurate, a change in Pf is
reflected in DTg as an equivalent decibel change in the decision threshold.9 Given that heavy-tailed
background distributions require an increase in the detector decision threshold to maintain Pf , the
approximation also applies to clutter-dominated scenarios.

4.3.1 Approximation for a Gaussian-fluctuating signal

Using (57) to solve for γd, letting hg = γf be the decision threshold for a benign background,
and using these in (59), it can be seen that the design SNR in a clutter-dominated background is

DTc = 10 log10
(
S̄g + 1

)
+∆h (76)

≈ DTg +∆h [units: dB] (77)

where S̄g = 10DTg/10 [unitless] is the linear-quantity design SNR for a benign background and

∆h = 10 log10

(
hc

hg

)
[units: dB] (78)

is the increase in the decision threshold (in decibels) required to maintain the same Pf when clutter
dominates. The approximation shown in (77) will be accurate when the design SNR is large (S̄g ≫
1). When the design SNR is small, the approximation implied by (59) is unlikely to be accurate.
The efficacy of this approach can be seen in Figs. 7 & 8 (dots in color) for a wide range of scenarios.

4.3.2 Approximation for a deterministic signal

Consider Hmam’s equation [21] from (51) in Sect. 4.1.3, which relates the decision threshold,
Pd, and M to DT. Using the decision thresholds hc and hg, the design SNR for a deterministic
signal in clutter can be approximated as that for the benign background plus the decibel difference

9The author thanks G. Wadsworth for pointing out this phenomena.
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in the decision thresholds (∆h),

DTc ≈ DTg +∆h + 10 log10


[√

1− 2M−1
4hc

− A√
hc

]2
− 2M−1

4hc[√
1− 2M−1

4hg
− A√

hg

]2
− 2M−1

4hg

 (79)

≈ DTg +∆h [units: dB]. (80)

The approximation in (80) will be valid when the decision thresholds are large compared to (2M −
1)/4 and Pd is near 0.5 so A from (52) is near zero.

Noting that the decision threshold increases with the clutter severity, it suffices to consider when
hg will be large compared to (2M − 1)/4. A surprisingly accurate approximation to hg = γf =
γ̃−1(1− Pf ;M) can be found in

hg ≈M − 1 +
(√

M − 1
)
Φ−1(1− Pf )− log(Pf ) [unitless: normalized power], (81)

which was obtained by altering the threshold obtained from a Gaussian approximation to the gamma
distribution (which is accurate at large M) to be precise when M = 1.10 This illustrates that hg
increases with M and is always larger than its value at M = 1 (with Pf < 0.5), which is − logPf .
However, (2M − 1)/(4hg) is an increasing function of M . As such the approximation in (80) may
not be accurate when M is large. This is essentially the same restriction as that for the Gaussian-
fluctuating signal, where the SNR (per intensity sample) must be large yet it decreases as M
increases.

Some of these expectations can be seen in Figs. 9 & 10 (dots in color): the approximation is
very accurate when Pd = 0.5 for M = 1 and less so when Pd increases to 0.9.

5 J-divergence detection currency for signals in GPD clutter

An alternative performance measure to the traditional (Pd, Pf ) metrics more suitable to combi-
nation across multiple measurements can be found in the J-divergence detection currency (JDC).
As described in [10], JDC is the logarithmic quantity of the J-divergence between the PDFs of the
detector decision statistic under the noise-only and signal-plus-noise hypotheses, respectively, f0(y)
and f1(y).

The linear-quantity J-divergence [27] is

J =

∞∫
−∞

[f1(y)− f0(y)] log

[
f1(y)

f0(y)

]
dy, (83)

10The maximum absolute error of the approximation in (81) is less than 0.2 dB for Pf ∈ [10−16, 10−2] and M ≤ 100,
with the worst errors occurring for the smallest values of Pf . It can be improved to be below 0.1 dB by including an
additional multiplicative term as follows,

hg ≈
[
M − 1 +

(√
M − 1

)
ϕf − log(Pf )

]
10−(1−1/M)(ϕf−3.2−0.8/

√
M)/35, (82)

where ϕf = Φ−1(1− Pf ).
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which is also the difference in the means of the log-likelihood ratio under the two hypotheses. For a
Gaussian-fluctuating signal in a benign background, the J-divergence is simply J = s2/(1+s) where
s [unitless] is the linear-quantity SNR. From this example, and more generally when working with
intensities, the linear-quantity J-divergence is seen to be similar to a ratio of squared intensities.
As such, detection currency is obtained by converting J to decibels according to

JDC = 5 log10 J [units: dB]. (84)

The PDF under the noise-only hypothesis for a single GPD intensity sample is simply

f0(y) =
1

λ
(
1 + γ

λy
)γ−1+1

for y ≥ 0 (85)

from (2). However, presence of a signal leads to an integral definition similar to those obtained for
Pd in Sect. 4.1.2 for deterministic and Gaussian-fluctuating signals. These are generalized to account
for a Rician signal in Sect. 5.1 and a numerical integration is prescribed in Sect. 5.2 for evaluating
detection currency. The Rician signal is a combination of the deterministic and Gaussian-fluctuating
signals. In addition to the SNR, it is defined by a fraction ρ ∈ [0, 1] describing the proportion of
the Gaussian-fluctuating signal component. Setting ρ = 0 produces a deterministic signal, whereas
ρ = 1 results in a Gaussian-fluctuating signal. It is particularly useful when propagation is expected
to induce some randomness in an echo, but not enough to produce a Gaussian-fluctuating signal.

An example of the J-divergence detection currency obtained for an 18-dB SNR Rician signal in
GPD clutter is shown in Fig. 16 as a function of γ for values of ρ ranging from a deterministic signal
to a Gaussian-fluctuating one. In each case, increasing tail heaviness of the clutter (i.e., increasing
γ) leads to a loss in performance. As described in [10], 5 dB of detection currency represents a
minimum detectable level (MDL), whereas 10 dB provides a high-quality operating point. The
results in Fig. 16 demonstrate how a very-heavy-tailed clutter background can reduce detection
performance from close to a high-quality operating point to a low-quality one.

The J-divergence detection currency quantifies the difference between the PDFs of the decision
statistic at all values. When combining detection currency across multiple measurements (where the
linear quantities simply add for independent measurements), it is often desirable to account for the
thresholding operation commonly imposed on individual measurements. The numerical integration
described in Sect. 5.2 can be modified to handle the thresholding. However, approximations to
the distribution of the excess over the threshold enable a usefully accurate and straightforward
analytical evaluation of JDC. The J-divergence after thresholding and its approximation for signals
in GPD clutter are presented in Sect. 5.3.

5.1 Intensity PDF for a Rician signal in GPD clutter

In contrast to the design-SNR analysis of Sect. 4, which was limited to deterministic and
Gaussian-fluctuating signals, the approximation employed in Sect. 5.3.1 to obtain JDC is based
on the first two moments of the intensity and is therefore straightforward to apply to the more
general case of a Rician signal in GPD clutter. Similar to the development in Sects. 4.1.2 & 4.2.4,
the intensity for this scenario can be characterized by describing Y from (39) conditioned on W as
being proportional to a non-central-chi-squared-distributed random variable. Using (70) and (71),
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Figure 16: J-divergence detection currency (JDC) for various Rician signals in GPD clutter as a
function of the GPD shape parameter (γ) for a fixed SNR of 18 dB.

the PDF of Y for a Rician signal in GPD clutter is obtained by removing the conditioning on W ,

f1(y) =

∫ ∞

0

2w

1− γ + ρsw
· fχ2

2,δ

(
2wy

1− γ + ρsw

)
fW (w) dw, (86)

where fχ2
2,δ
(·) is the non-central chi-squared PDF with two degrees of freedom and non-centrality

parameter δ.

This illustrates that evaluation of J-divergence for a Rician signal in a GPD background requires
computational effort equivalent to a two-dimensional integral. The following section describes how
this can be accomplished efficiently.

5.2 Numerical evaluation of J-divergence

If direct evaluation of the PDF of a decision statistic is computationally intensive, as can be the
case when the signal or noise is heavy tailed, it is prudent to implement an economical numerical
approximation to the J-divergence integral in (83). In most cases, the integrand in (83) is smooth
enough to use a trapezoidal-rule [28, Sect. 7.1] approximation. Owing to the potential problems
when evaluating the PDFs at the upper and lower limits, however, the integral should be restricted
to the interval [ya, yb] where −∞ < ya < yb < ∞ are chosen to limit the approximation error
(applying this to an envelope or intensity decision statistic implies ya > 0). Once the interval is
defined, the final requirement is to determine how frequently to sample the integrand.
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Hard-limiting the decision statistic to be on the interval [ya, yb] results in a mixed continuous
and discrete random variable. Because the hard-limiting discards information, the J-divergence of
the hard-limited decision statistic acts as a lower bound on the unlimited decision statistic. It is
straightforward to show that the hard limiting results in

J ≥ (pa − qa) log

(
pa
qa

)
+

yb∫
ya

[f1(y)− f0(y)] log

[
f1(y)

f0(y)

]
dt+ (qb − pb) log

(
qb
pb

)
, (87)

where

pa = F0(ya), qa = F1(ya), pb = 1− F0(yb), and qb = 1− F1(yb) (88)

define the probabilities of observing Y ≤ ya or Y > yb under the two hypotheses from the CDFs
F0(y) and F1(y). If the presence of signal has the effect of moving the distribution to the right (i.e.,
the CDFs satisfy F1(y) ≤ F0(y) for all y), then qa < pa and qb > pb. By choosing ya and yb so that
pa and qb are sufficiently small, the contributions in (87) arising from the discrete events (i.e., the
first and last terms) can be ignored to produce the approximation

J ≈
yb∫
ya

[f1(y)− f0(y)] log

[
f1(y)

f0(y)

]
dt, (89)

which is easily evaluated using a trapezoidal-rule numerical integral [28, Sect. 7.1] and the sampling
paradigm described below. In most cases, ya can be set so pa = F0(ya) ≈ ϵ and yb so that
qb = 1 − F1(yb) ≈ ϵ with ϵ = 10−4. In rare circumstances (e.g., a very heavy-tailed signal in a
benign background), the other probabilities can force the use of a smaller value of ϵ or inclusion of
the binary terms via (87). Solving the above equations for ya and yb requires a functional inversion
of the CDF under H0 and H1 (e.g., using a Newton-Raphson iteration). Although this is generally
not an issue under H0 (even for heavy-tailed noise), it can be burdensome under H1 when each CDF
evaluation requires its own numerical integral.11 An alternative can be found in using an appropriate
approximation to the distribution of the decision statistic under H1 via moment matching; qb does
not need to be precisely equal to ϵ, it only needs to be sufficiently small.

An advantage of this implementation is that it is straightforward to adapt when evaluating
the J-divergence after thresholding (see Sect. 5.3) by letting ya = h and retaining the binary
component associated with the event T ≤ ya (i.e., the first term in (87)). Noting that pa = 1− Pf
and qa = 1− Pd, the result is seen to match that described in (90).

The sampling of the integrand in (87) or (89) should be done logarithmically to account for
large SNRs. Spacing the samples every half decibel was generally found to be sufficient for testing
single-intensity decision statistics. However, when accounting for thresholding, it may be necessary
to enforce a minimum number of samples (e.g., 20).

5.3 J-divergence detection currency after thresholding

A useful attribute of JDC is that optimal combination of multiple independent measurements
results in addition of the linear-quantity J-divergences. In many systems where multiple mea-
surements are combined, they are first subjected to their own detection processing (e.g., as in a

11Note that evaluating 1 − F1(y) may require averaging the conditional exceedance distribution directly, rather
than evaluating F1(y) and subtracting it from one.
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distributed system where individual sensors must detect a signal before conveying the information
to a fusion center). To account for this in the evaluation of J-divergence, the decision statistic is
hard-limited to remain at or above the detector decision threshold (h), which produces a mixed
continuous and discrete random variable. If Pd = Pr{Y ≥ h|H1} = 1 − F1(h) is the probabil-
ity of detection and Pf = Pr{Y ≥ h|H0} = 1 − F0(h) is the probability of false alarm, then the
linear-quantity J-divergence after thresholding is

J = [Pd − Pf ] log

[
1− Pf
1− Pd

]
+

∞∫
h

[f1(y)− f0(y)] log

[
f1(y)

f0(y)

]
dy. (90)

By rewriting the integral in (90) in terms of the PDFs of the excess over the threshold, it can be
phrased as

J = [Pd − Pf ] log

[
Pd[1− Pf ]

Pf [1− Pd]

]
+ PdĨ1:0 + Pf Ĩ0:1 (91)

where Ĩ1:0 and Ĩ0:1 are the Kullback-Liebler (KL) divergences,

Ĩi:j =

∞∫
−∞

f̃i(z) log
f̃i(z)

f̃j(z)
dz, (92)

for the excess over the threshold Z = Y − h given Y ≥ h under H0 and H1. The PDF of Z under
Hi is denoted by f̃i(z) and is related to the PDF of Y according to

f̃i(z) =
fi(z + h)

Pr{Y ≥ h|Hi}
. (93)

The tilde notation will be used to represent functions and parameters associated with the excess over
the threshold. When evaluating J-divergence through numerical integration, (90) is (marginally)
easier to implement than (91). However, the form in (91) can be easier to work with analytically
when the PDFs of Z or their approximations are easily described.

As noted in Sect. 2.3, the excess over the threshold under the noise-only case for GPD clutter is
another GPD model with the same shape parameter (γ̃ = γ) and a scale parameter λ̃ = λ+ γh =
1 + (h − 1)γ (recall that λ = 1 − γ for perfect normalization). Unfortunately, the signal-present
hypothesis does not have a simple closed-form solution. However, as seen in the following section, it
can be approximated accurately enough by a gamma distribution to be useful for evaluating JDC.
This requires the KL divergences between the gamma and GPD models, which are presented in
Sect. 5.3.3.

An example evaluation of JDC after thresholding is shown in Fig. 17 for a Rician signal in
GPD clutter with ρ = 0.3, an SNR of 18 dB, and various levels of thresholding. As might be
expected, the thresholding operation results in a loss in detection currency that increases with the
threshold. The black dots use the aforementioned gamma approximation to the excess over the
threshold when signal is present and the lines use the numerical integration described in Sect. 5.2.
Although the approximation is good in these examples (the maximum absolute error in JDC was
less than 0.08 dB), the accuracy is degraded in general when JDC is small (e.g., < 0 dB) or for very
low thresholds and extremely heavy-tailed clutter.
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Figure 17: J-divergence detection currency (JDC) for a Rician signal (ρ = 0.3) in GPD clutter
after various levels of thresholding as a function of the GPD shape parameter (γ) for a fixed SNR
of 18 dB.

5.3.1 Gamma approximation to the excess over the threshold

An advantage of working with JDC after thresholding is that the approximations to the dis-
tribution of the excess over the threshold can yield accurate representations without the need for
numerical evaluation of the J-divergence integral. As argued in Sect. 4.1.3, the signal-present distri-
bution of Y at high SNR can be approximated by that for the signal in a benign background. For the
Rician signal, this results in a non-central chi-squared distribution for the instantaneous intensity,
which can be difficult to work with analytically. An alternative can be found in the gamma distribu-
tion, which is often used as an approximation to the non-central chi-squared distribution [29, Sect.
29.8].

The gamma approximation to the intensity PDF when signal is present is accomplished by
matching the moments of the two distributions. The mean and variance of an instantaneous intensity
comprising a Rician signal in GPD clutter are, respectively,

µY = E[Y |H1] = 1 + s [unitless: normalized power] (94)

for the mean and

σ2Y = E
[
(Y − µY )

2|H1

]
= 2s+ ρ(2− ρ)s2 +

1

1− 2γ
[unitless: normalized power2] (95)

for the variance. These moments can be obtained using the formulas found in [1, Sect. 7.5.6.2] (in
particular, eqs. 7.241 and 7.242 coupled with the Rician-signal entry in Table 7.8 and the GPD

40 TR 2401



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

entry in Table 7.9). Equating these to the moments of a gamma distribution results in a shape
parameter

α =
(1 + s)2(1− 2γ)

1 + s[2 + ρ(2− ρ)s] (1− 2γ)
(96)

and a scale parameter

β =
1 + s[2 + ρ(2− ρ)s] (1− 2γ)

(1 + s)(1− 2γ)
=

1 + s

α
. (97)

Given that the intensity Y is gamma distributed with shape α and scale β, the distribution of
Z = Y − h given Y ≥ h is simply

f̃(z) =
fG(z + h;α, β)

1− FG(h;α, β)
for z ≥ 0, (98)

where fG(y;α, β) and FG(y;α, β) are, respectively, the PDF and CDF of the gamma distribution.
When α = 1, the gamma distribution simplifies to the exponential for which the distribution of Z is
also exponential. This justifies use of a gamma distribution to describe Z when α is near one, which
occurs when ρ is near one. When h is large enough, the exponential form of the limit distribution of
the excess over the threshold for a non-central chi-squared distribution (see Sect. 2.4) also suggests
the gamma model might be appropriate even for small values of ρ.

The gamma approximation to the excess over the threshold is obtained by matching the moments
of Z. The first two moments of Z can be shown to be

µ1 = E[Z|H1] = αβ
[1− FG(h;α+ 1, β)]

[1− FG(h;α, β)]
− h (99)

and

µ2 = E[Z2|H1] = α(α+ 1)β2
[1− FG(h;α+ 2, β)]

[1− FG(h;α, β)]
− 2hαβ

]1− FG(h;α+ 1, β)]

[1− FG(h;α, β)]
+ h2. (100)

Equating (99) and (100) with the moments of a gamma distribution produces the shape parameter

α̃ =
µ21

µ2 − µ21
(101)

and scale parameter

β̃ =
µ2 − µ21
µ1

. (102)

These are used with the characterization of the excess over the threshold under the noise-only
hypothesis as GPD with shape γ̃ = γ and scale λ̃ = 1+ (h− 1)γ to obtain the KL divergences used
in (91).

To summarize, the technique proposed for obtaining JDC for a Rician signal in GPD clutter is
to make a sequence of approximations, with each having weaknesses. These include:

1. approximating the intensity distribution of the Rician signal in GPD clutter by that for a
benign background [weakness: high γ or low SNR, which equates to low Pd or JDC],
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2. approximating the resulting non-central chi-squared distribution by a gamma distribution
[weakness: low ρ], and

3. approximating the excess over the threshold of a gamma distribution by another gamma model
[weakness: low threshold and low ρ].
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Figure 18: Maximum absolute error in the J-divergence detection currency (JDC) approximation
over the cases evaluated as a function of the Rician random-signal fraction (ρ) for various GPD
clutter shape parameters.

5.3.2 Accuracy of the detection-currency approximation

To assess the accuracy of the gamma-based approximation to JDC over a relevant set of scenarios,
the parameters were quantized to values of

• Pf at each decade from 10−16 to 10−2,

• ρ for 40 values logarithmically spaced from 0.01 to 1,

• γ = 0, 0.01, 0.08, 0.14, 0.25, 0.44, and 0.48, and

• SNR every decibel from 5dB to 30 dB.

The values of γ ∈ [0.08, 0.44] were taken from Table 1 and then supplemented with more and less
extreme values closer to the boundaries of the full [0, 0.5) domain. Cases for which Pd /∈ [0.1, 0.9999]
were discarded, as were any where the numerically evaluated JDC < 0 dB. The maximum absolute
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error in JDC over the Pf and SNR parameters is then shown in Fig. 18 as a function of ρ with
one line for each value of γ. The results indicate that the error is close to or below 0.1 dB when
ρ ≥ 0.05, Pf ∈ [10−16, 10−2], and the SNR is large enough to achieve the constraints on Pd and
JDC. This corroborates the expectation that the gamma approximation degrades as ρ decreases.

The effect of SNR was assessed by restricting the analysis to cases for which the JDC was at
least 5 dB. The results seen in Fig. 18 (black circles) indicate that the gamma approximation is
useful for values of ρ as low as 0.01 at these higher quality operating points. In the majority of
cases of practical interest, the gamma-based approximation to JDC (see Sect. D.2 for MATLAB®

code) will be accurate to within a tenth of a decibel.

5.3.3 Kullback-Liebler divergences between the gamma and GPD models

Recall that the approximation in Sect. 5.3.1 employs a gamma distribution with shape α̃ and
scale β̃ for the excess over the threshold when a Rician signal is present. As seen in (91), evaluation
of J-divergence then requires the Kullback-Liebler (KL) divergences between the gamma and GPD
models, with the latter representing the noise-only case and having shape γ̃ and scale λ̃. If Z is
gamma distributed with shape α̃ and scale β̃, then its PDF is

f̃1(z) =
zα̃−1e−z/β̃

Γ(α̃)β̃α̃
for z > 0. (103)

The log-likelihood-ratio (LLR) between the Gamma(α̃, β̃) and GPD(γ̃, λ̃) PDFs is

l(z) = log
f̃1(z)

f̃0(z)
= (α̃− 1) log(z)− z

β̃
− log Γ(α̃)− α̃ log β̃ + log λ̃+

(
1 +

1

γ̃

)
log

(
1 +

γ̃z

λ̃

)
.

(104)

The KL divergences are obtained by taking the expectation of l(Z) in (104) under H1 to obtain Ĩ1:0
and H0 to yield −Ĩ0:1. The former results in

Ĩ1:0 = E[l(Z)|H1] = log

(
λ̃

β̃Γ(α̃)

)
− α̃+ (α̃− 1)ψ(α̃) +

(
1 +

1

γ̃

)
gα̃−1

(
γ̃β̃

λ̃

)
(105)

where ψ(·) is the digamma function, the solution to E[logZ|H1] = log β̃+ψ(α̃) is obtained via [30, eq.
4.352-1], and the function gκ(δ) is defined as

gκ(δ) =

∫ ∞

0

zκe−z

Γ(κ+ 1)
log(1 + δz) dz. (106)

When κ is an integer (k), [30, eq. 4.337-5]12 can be used to evaluate it via

gk(δ) =
k∑
j=0

1

(k − j)!

[
−(−δ)j−ke1/δEi

(
−δ−1

)
+

k−j∑
l=1

(l − 1)!(−δ)l+j−k
]
, (107)

where Ei(x) is the exponential integral function (EIF). The EIF is defined as Ei(x) =
∫ x
−∞ t−1et dt

and can be obtained in Matlab for x < 0 via -expint(-x). For the Gaussian-fluctuating signal, α̃ =

12Note that there are two missing minus signs in [30, eq. 4.337-5].
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1 and g0(δ) = −e1/δEi(−1/δ) can be obtained exactly. Approximations to Rician and deterministic
signals are likely to result in non-integer values of α̃ and therefore κ. For these cases, the function in
(106) was approximated by linear interpolation from the nearest integers to κ = α̃− 1 using (107).
When k was too large and/or δ too small (approximately when δ/k < 0.001), numerical errors were
encountered in the evaluation of (107). In these scenarios (high SNR with distributions approaching
a deterministic signal in a benign background), a numerical evaluation of (106) was required.

The KL divergence Ĩ0:1 for the gamma/GPD model pair can be simplified to

Ĩ0:1 = −E[l(Z)|H0] = (α̃− 1)

[
ψ

(
1

γ̃

)
+C

]
+
γ̃2 − 1 + λ̃/β̃

(1− γ̃)
+ log

[
β̃α̃γ̃α̃−1Γ(α̃)

λ̃α̃

]
(108)

using [30, eqs. 4.293-14 & 4.293-9] and [31, eqs. 44:5:1 & 44:5:3] with C ≈ 0.5772 equal to Euler’s
constant.

6 Conclusions

The focus of this report has been on representing active-sonar clutter with the generalized
Pareto distribution (GPD) and using it to model the degradation in detection performance of a
sonar system as the clutter severity increases. In reviewing background information on the GPD
model, the domain of its shape parameter (which controls severity in terms of the heaviness of the
distribution tail) was partitioned into regions ranging from scarcely to extremely heavy tailed. These
regions were related to potential sources of clutter through a mapping to the K-distribution shape
parameter and inform which parameter values are appropriate for modeling different scenarios.

To determine how GPD model parameters should be obtained in practice, several estima-
tion approaches were compared. A Bayesian technique previously developed for estimating the
K-distribution shape parameter was applied to the GPD to force the envelope-based method-of-
moments estimate to lie on a region representing physically realizable processes. Of the estimators
evaluated, the most appropriate for use was seen to be a mixed estimator taking the envelope-based
method-of-moments estimate when it is viable and otherwise resorting to the Bayesian adaptation.

Approximations to the design SNR required to meet a (Pd, Pf ) operating point (i.e., the detec-
tion threshold (DT) term in the sonar equation) were developed for deterministic and Gaussian-
fluctuating signals in GPD clutter for single- and integrated-intensity detectors. The approximations
were seen to be accurate (absolute error less than 0.1 dB) over a wide range of operating points and
clutter severity. The approach entailed using the detector decision threshold (h) required to meet
the Pf specification in the clutter-dominated background, while representing the relationship map-
ping h and SNR to Pd with the Gaussian distribution chain for a benign background. Although the
integrated-intensity detector required an additional approximation to obtain the detector decision
threshold as a function of Pf , the clutter severity, and number of intensities being integrated, it
was still usefully accurate over a wide range of scenarios. This type of analysis is representative
of systems that adapt their decision threshold to the clutter background in order to maintain a
constant probability of false alarm. A simple approximation to the increase in DT when the clutter
background becomes more severe was shown to be the decibel increase in the intensity-based de-
cision threshold required to maintain Pf . Such an approximation can be applied to determine the
increase in DT empirically using data from a system in a cluttered environment.

Techniques for evaluating the J-divergence detection currency (JDC) for the basic sonar signal
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models in GPD clutter were presented. JDC is useful when a system combines multiple measure-
ments, such as those from different transmit waveforms or separate receivers. Although a numerical
solution was required to obtain the JDC after matched filtering, an accurate approximation was
developed when the analysis includes the thresholding process found in most detectors. Analysis
of JDC illustrated how a high-quality operating point in a benign background can be a low-quality
one in a severe-clutter scenario.

Although the deterministic signal exhibits similar performance to the Gaussian-fluctuating signal
at low SNR in some scenarios, its consistent amplitude provides significant gains as SNR increases
(e.g., see Fig. 13). However, the performance metrics (Pd or JDC) are known to be very sensitive
at high SNR. This sensitivity was also observed when the background was dominated by clutter.
When JDC is the performance metric, a reasonable alternative is to use a Rician signal with a small
random-power fraction (e.g., ρ = 0.1). Unfortunately, there is no simple solution for DT other than
to use the Gaussian-fluctuating signal, which is not always appropriate.

In order to facilitate application of the parameter estimation algorithms and performance mod-
eling techniques, MATLAB® functions implementing the key results can be found in the appendices.
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A MATLAB® functions for intensity distributions in GPD clutter

A.1 Intensity PDF for GPD clutter

function  f=gpdipdf(y,gam,lam)
%  f=gpdipdf(y,gam,lam)
%      PDF  of  a  generalized-Pareto-distributed  intensity  with  mean  =  lam/(1-gam)
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      f  =  GPD  intensity  PDF
%      y  =  PDF  argument  (linear-intensity)
%      (gam,lam)  =  GPD  shape  &  scale  parameters
%
[y,gam,lam]=input_par_std(y,gam,lam);
f=(1+gam.*y./lam).^(-1-1../gam)./lam;
f(gam==0)=exp(-y(gam==0)./lam(gam==0))./lam(gam==0);
f(y<0)=0;

A.2 Intensity CDF for GPD clutter

function  F=gpdicdf(y,gam,lam)
%  f=gpdicdf(y,gam,lam)
%      CDF  of  a  generalized-Pareto-distributed  intensity  with  mean  =  lam/(1-gam)
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      F  =  GPD  intensity  CDF
%      y  =  CDF  argument  (linear-intensity)
%      (gam,lam)  =  GPD  shape  &  scale  parameters
%
[y,gam,lam]=input_par_std(y.*(y>0),gam,lam);
F=1-(1+gam.*y./lam).^(-1../gam);
F(gam==0)=1-exp(-y(gam==0)./lam(gam==0));

A.3 Inverse of GPD-intensity CDF

function  h=gpdiinv(p,gam,lam)
%  h=gpdiinv(p,gam,lam)
%      Functional  inverse  of  the  CDF  of  a  generalized-Pareto-distributed
%      intensity  with  mean  =  lam/(1-gam)
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      h  =  intensity  yielding  desired  probability  (p)
%      p  =  probability  [CDF  at  output  h  is  F(h)=p]
%      (gam,lam)  =  GPD  shape  &  scale  parameters
%
[p,gam,lam]=input_par_std(p,gam,lam);
h=((1-p).^-gam-1).*lam./gam;
h(gam==0)=-lam(gam==0).*log(1-p(gam==0));
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A.4 Intensity CDF of a Rician signal in GPD clutter

function  F=ricegpd_cdf(y,s,rho,gam)
%  F  =  ricegpd_cdf(y,s,rho,gam)
%      Intensity  CDF  of  a  Rician  signal  in  unit-power  GPD  clutter
%  Parameters:
%      y  =  CDF  argument  (linear-intensity)  [matrix/vector]
%      s  =  Rician  signal  SNR  (linear)  [scalar]
%      rho  =  Rician  signal  fraction  of  random  signal  power  [scalar]
%      gam  =  GPD  shape  parameter  [scalar]
%
if  gam>0
    F=zeros(size(y));
    for  i=1:numel(y)
        F(i)=integral(@(w)  gampdf(w,1/gam,gam)...
        .*ncx2cdf(2*y(i)*w./(1-gam+rho*s*w),2,2*(1-rho)*s*w./(1-gam+rho*s*w)),0,inf);
    end
else,  F=ncx2cdf(2*y./(1+rho*s),2,2*(1-rho)*s./(1+rho*s));
end

A.5 Intensity PDF of a Rician signal in GPD clutter

function  f=ricegpd_pdf(y,s,rho,gam)
%  f  =  ricegpd_pdf(y,s,rho,gam)
%      Intensity  PDF  of  a  Rician  signal  in  unit-power  GPD  clutter
%  Parameters:
%      y  =  PDF  argument  (linear-intensity)  [matrix/vector]
%      s  =  Rician  signal  SNR  (linear)  [scalar]
%      rho  =  Rician  signal  fraction  of  random  signal  power  [scalar]
%      gam  =  GPD  shape  parameter  [scalar]
%
if  gam>0
    f=zeros(size(y));  lam=1-gam;
    for  i=1:numel(y)
        f(i)=integral(@(w)  gampdf(w,1/gam,gam)...
      .*ncx2pdf(2*y(i).*w./(lam+rho.*s.*w),2,2*(1-rho).*s.*w./(lam+rho.*s.*w))...
      .*2.*w./(lam+rho.*s.*w),0,inf);
    end
else,  f=ncx2pdf(2*y/(1+rho*s),2,2*(1-rho)*s/(1+rho*s))*2/(1+rho*s);
end

A.6 GPD random number generator

function  y=gpdirnd(gam,lam,varargin)
%  y  =  gpdirnd(gam,lam,M,N,...)
%      Simulate  GPD  random  numbers
%  Parameters:
%      (gam,lam)  =  GPD  shape  &  scale  parameters  (scalars)
%      M,N,...  =  dimension  of  matrix  to  produce
%
MN=[varargin{:}];  y=exprnd(lam,MN);
if  gam>0,  y=y./gamrnd(1/gam,gam,MN);  end
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A.7 Support function

function  varargout=input_par_std(varargin)
%  [x1,x2,x3,...]  =  input_par_std(x1,x2,x3,...)
%      Finds  the  maximum  dimension  of  the  input  variables  (up  to  2-D)  and
%      fills  scalar  and  vector  inputs  to  be  that  size  2-D  array  in  the  output.
%
nrc=[cellfun('size',varargin,1)'  cellfun('size',varargin,2)'];
varargout=cell(1,nargout);
for  i=1:nargout,  varargout{i}=repmat(varargin{i},max(nrc)-nrc(i,:)+1);  end

B MATLAB® functions for estimating the GPD shape parameter

B.1 Example estimation of Pf for GPD clutter

%  File  test_gpd_est.m
%  Example  fitting  of  PFA  through  the  GPD  model
gam=0.2;  lam=2.5;  N=1e4;  %  True  parameters  &  #  observations
y=gpdirnd(gam,lam,N,1);  %  Simulate  linear-quantity  intensity  data
gam_est=gpdmombaymix(y)      %  Shape  parameter  estimate
lam_est=mean(y)*(1-gam_est)      %  Scale  parameter  estimate
[f,h]=hist(y,200);  F=1-cumsum(f)/N;  Fge=1-gpdicdf(h,gam_est,lam_est);
figure(1);  Fexp=exp(-h/mean(y));      %  Exponential-intensity  PFA
hf=semilogy(h,Fge,h,Fexp,h,F,'k-');  ylim([10/N  1]);    %  Compare  PFA  via  histogram
legend(hf,'GPD  model','Exponential  model','Data');
xlabel('Intensity  (linear)');  ylabel('PFA');

B.2 Envelope method-of-moments estimator

function  gam=gpdmomenv(x)
%  gam  =  gpdmomenv(x)
%      GPD  shape-parameter  estimate  via  envelope  method  of  moments
%  Parameters:
%      x  =  envelope  data  (single  vector  or  matrix  with  separate  trials  in  each  column)
%  Note:  when  moment  equations  are  not  invertible,  gam  is  set  to  zero
%
D=(mean(x)./std(x,1)).^2;    %  Envelope  moment  ratio
gam=zeros(1,length(D));  %  Initialize  to  default  of  gam=0  (Rayleigh  envelope)
i=find(D<pi/(4-pi));  %  For  those  within  bound,  map  D  to  estimate  of  gamma
gam(i)=arrayfun(@(d)gpdmominv(d,0),D(i));
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B.3 Intensity method-of-moments estimator
function  gam=gpdmomint(y)
%  gam  =  gpdmomint(y)
%      GPD  shape-parameter  estimate  via  intensity  method  of  moments
%  Parameters:
%      y  =  intensity  data  (single  vector  or  matrix  with  separate  trials  in  each  column)
%
D=(mean(y)./std(y,1)).^2;  %  Intensity  moment  ratio
gam=(1-D)/2;

B.4 Functional inverse of the GPD moment-ratio equation
function  gam=gpdmominv(D,qNR)
%  gam  =  gpdmominv(D,[qNR])
%      Solution  of  the  GPD  envelope  moment-ratio  equation:  g(gamma)=D
%  Parameters:
%      D  =  envelope  moment  ratio  (mean  square  envelope/envelope  variance)
%      qNR  =  0  for  approximation  or  1  [default]  to  refine  via  Newton-Raphson  iteration
%
dmax=pi/(4-pi);  r=D/dmax;  if  nargin==1,  qNR=1;  end
gam=(1-r).*(1-r*8/19+r.^2*26/53-r.^3*3/14);  %  Empirical  approximation
if  qNR  %  Refine  via  Newton-Raphson  iteration
    qend=0;    TOL=1e-5;    i=0;    maxiter=20;
    while  ~qend
        cg=exp(log(gam)+2*(gammaln(1../gam)-gammaln(1../gam-0.5)));
        f=pi*(1-gam)./(4*cg-pi*(1-gam));
        cgp=cg.*(gam-2*psi(1../gam)+2*psi(1../gam  -0.5))./(gam.^2);
        fp=-4*pi*(cg+(1-gam).*cgp)./((4*cg-pi*(1-gam)).^2);
        g=gam-(f-D)./fp;
        if  (max(abs((g-gam)./g))<TOL)||(i>maxiter),  qend=1;  end
        i=i+1;  gam=g;
    end
    gam(D==dmax)=0;  %  Fix  nan  in  iteration  when  D=dmax  &  gam=0
end

B.5 Bayesian method-of-moments estimator
function  gam=gpdmombayes(y)
%  gam  =  gpdmombayes(y)
%      GPD  shape-parameter  estimate  via  Bayesian  method  of  moments
%  Parameters:
%      y  =  intensity  data  (single  vector  or  matrix  with  separate  trials  in  each  column)
%
x=sqrt(y);  n=length(x);  %  Convert  to  envelope  data
u=mean(x);  v=mean((x-u).^2);  k4=mean((x-u).^4)./(v.^2);  %  Sample  moments
m1e=(1-1/n);  m2e=(1-3/n+5/(n^2)+k4*(1-2/n)/n);  %  Variance  moments
t=(u.^2)./v;  m1=(t*m1e+1/n);  m2=((t.^2).*m2e+6*t.*m1e/n+3/(n^2));  %  Numerator  moments
at=(m1.^2)./(m2-m1.^2);  bt=(m2-m1.^2)./m1;  %  Fit  moments  to  a  gamma
dmax=pi/(4-pi);  dmin=pi^2/(16-pi^2);
%  Posterior  mean  on  d
tmp=exp(at.*log(dmax)-dmax./bt-gammaln(at+1)-at.*log(bt)).*...
                          (1-exp(at.*log(dmin/dmax)-(dmin-dmax)./bt));
d=at.*bt.*(1-tmp./(gamcdf(dmax,at,bt)-gamcdf(dmin,at,bt)));
gam=gpdmominv(d,0);  %  Transform  back  to  g
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B.6 Mixed Bayesian method-of-moments estimator

function  gam=gpdmombaymix(y)
%  gam  =  gpdmombaymix(y)
%      GPD  shape-parameter  estimate  via  envelope  MoM  if  it  is  on  (0,0.5)
%      and  the  Bayesian  MoM  if  it  is  not
%  Parameters:
%      y  =  intensity  data  (single  vector  or  matrix  with  separate  trials  in  each  column)
%
if  size(y,1)==1,  y=y(:);  end  %  Convert  row  vector  to  column
gam=gpdmomenv(sqrt(y));
ib=find((gam==0)|(gam>=0.5));  %  Check  validity
if  any(ib),  gam(ib)=gpdmombayes(y(:,ib));  end

B.7 Maximum likelihood estimator

function  [gam,lam]=gpdmle(y,ginit)
%  [gam,lam]  =  gpdmle(y,[ginit])
%      GPD  parameter  estimates  via  maximum  likelihood
%  Parameters:
%      [gam,lam]  =  GPD  shape  and  scale  parameters
%      y  =  intensity  data  (single  vector)
%      ginit  =  optional  initialization  to  MLE  iteration  [default  uses  intensity  MoM]
%
arguments
    y  double;
    ginit  (1,1)  double  =  gpdmomint(y);
end
gam=ginit;  lam=mean(y)*(1-gam);
qend=0;  TOL=1e-6;  i=0;  maxiter=200;  gam0=inf;  ymax=max(y);
while  ~qend  %  Iterate  on  MLE  with  intensity  MOM  for  initialization
    if  lam<-gam*ymax      %  Test  for  argument  of  logarithm  being  negative
        [gam,lam]=gpdmle(y,abs(ginit));    %  if  so  re-run  initializing  at  gam>0
    end
    lam1=(gam+1)*mean(y./(1+gam*y/lam));    gam=mean(log1p(gam*y/lam));    lam=lam1;
    if  (abs(gam-gam0)<TOL)||(i>maxiter),  qend=1;  end
    i=i+1;  gam0=gam;
end
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C MATLAB® functions for design SNR in GPD clutter

C.1 Detection threshold (DT) in GPD clutter
function  DT=dt_gpd(Pd,Pf,gam,M,Qsig)
%  DT  =  dt_gpd(Pd,Pf,gam,M,Qsig)
%      Design  SNR  (detection  threshold)  in  decibels  (dB)  for  an  integrated-intensity
%      detector  with  basic  signals  in  GPD  clutter
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      Pd  =  probability  of  detection
%      Pf  =  probability  of  false  alarm
%      gam  =  GPD  shape  parameter  \in  [0,0.5)  (gam=0  is  Gaussian  noise)
%      M  =  number  of  independent  intensities  summed
%      Qsig  =  'det'  for  deterministic  signal
%                =  'gfs'  for  Gaussian-fluctuating  signal
%  Parameters  Pd,  Pf,  gam,  &  M  can  be  a  mix  of  scalars  &  2-D  matrices
%
[Pd,Pf,gam,M,DT]=input_par_std(Pd,Pf,gam,M,nan);  %  Standardize  input  size
h=10..^(gpdiint_thr(Pf,gam,M)/10);  %  Get  decision  threshold
if  strcmpi(Qsig,'det')  %----Deterministic  signal
    %  Approximate  SNR-PD  relationship  via  Hmam's  equation
    B=0.19./(sqrt(0.819025+1.5206*Pd.*(0.9998-Pd))-0.905);
    A=sign(0.5-Pd).*sqrt(0.85616*log(B));
    DT=-10*log10(M)+10*log10((sqrt(h-M/2+0.25)-A).^2-M/2+0.25);
elseif  strcmpi(Qsig,'gfs')  %----Gaussian-fluctuating  signal
    gamd=gaminv(1-Pd,M,1);  DT=10*log10(h./gamd-1);
end

C.2 Numerical evaluation of Pd for intensity integration in GPD clutter
function  Pd=gpdiint_pdrice(hdb,gam,M,s,rho)
%  Pd  =  gpdiint_pdrice(hdb,gam,M,s,rho)
%      The  probability  of  detection  for  a  Rician  signal  in  GPD  clutter
%      with  a  detector  summing  M  unit-power  intensity  samples
%  Parameters:
%      hdb  =  detector  decision  threshold  [units:  dB]  (matrix/vector)
%      gam  =  GPD  shape  parameter  (scalar)
%      M  =  number  of  independent  GPD  intensities  integrated  (scalar)
%      s  =  linear-quantity  SNR  (per  intensity  sample)  (scalar)
%      rho  =  Rician  fraction  of  random  signal  power  (scalar)
%
ncxcfun=@(w,gam,lam,s,rho)  ...
      exp(1j.*w.*(1-rho).*s./(1-1j.*w.*(rho.*s+lam)))./(1-1j.*w.*(rho.*s+lam));
gpd1cfun=@(w,gam,s,rho)  integral(@(W)  ...
      ncxcfun(w,gam,(1-gam)./W,s,rho).*gampdf(W,1/gam,gam),0,inf,'Waypoints',1);
cfun=@(w,gam,M,s,rho)  gpd1cfun(w,gam,s,rho).^M;
h=10..^(hdb/10);  Pd=zeros(size(h));  rTOL=1e-6;
for  i=1:numel(h)
    if  M==1,  Pd(i)=1-ricegpd_cdf(h(i),s,rho,gam);
    else
        Pd(i)=0.5-integral(@(w)  imag(exp(1j*w).*conj(cfun(w/h(i),gam,M,s,rho)./w))/pi,...
                      0,inf,'ArrayValued',true,'RelTol',rTOL);
    end;
end
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C.3 Numerical evaluation of Pf for intensity integration in GPD clutter

function  Pf=gpdiint_pf(hdb,gam,M)
%  Pf  =  gpdiint_pf(hdb,gam,M)
%      The  probability  of  false  alarm  of  the  detector  summing  M  unit-power
%      intensity  samples  of  GPD  clutter
%  Parameters:
%      hdb  =  detector  decision  threshold  [units:  dB]  (matrix/vector)
%      gam  =  GPD  shape  parameter  (scalar)
%      M  =  number  of  independent  GPD  intensities  integrated  (scalar)
%
h=10..^(hdb/10);
if  gam==0,  Pf=gammainc(h,M,'upper');
else
    Pf=zeros(size(hdb));  lam=1-gam;  gami=1/gam;
    rTOL=1e-8;    %  Relative  tolerance  useful  for  Pf>=1e-6
    %  Functions  for  characteristic  function  inversion  (M~=1,  2  or  3)
    fcfun=@(w,g)  1j*integral(@(r)exp(-w*r).*gpdipdf(1j*r,g,1-g),0,inf,'RelTol',rTOL);
    cfun=@(w,gam,M)  fcfun(w,gam).^M;
    %  Loop  over  threshold
    for  i=1:numel(h)
        if  M==1
            Pf(i)=(1+gam.*h(i)./lam).^(-gami);
        elseif  M==2
            c=gam*h(i)/lam;
            Pf(i)=(1+integral(@(z)  (1../(1-z./(1+c)).^gami).*...
                                (gami./(1+z).^(gami+1)),0,c))./(1+c).^gami;
        elseif  M==3
            Pf(i)=1-integral2(@(y,z)  gpdicdf(h(i)-z-y,gam,lam).*gpdipdf(y,gam,lam).*...
                              gpdipdf(z,gam,lam),0,h(i),0,@(y)h(i)-y,'RelTol',rTOL);
        else
            Pf(i)=0.5-integral(@(w)  imag(exp(1j*w).*conj(cfun(w/h(i),gam,M)./w))/pi,...
                            0,inf,'ArrayValued',true,'RelTol',rTOL);
        end
    end
end
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C.4 Empirical formula for the detector decision threshold (h) with intensity
integration in GPD clutter

function  hdb=gpdiint_thr(Pf,gam,M)
%  hdb  =  gpdiint_thr(Pf,gam,M)
%      Empirical  approximation  to  the  decision  threshold  (in  decibels)
%      achieving  a  desired  probability  of  false  alarm  for  a  detector
%      integrating  a  number  of  independent  GPD  intensities
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      hdb  =  detector  decision  threshold  [units:  dB]
%      Pf  =  desired  probability  of  false  alarm
%      gam  =  GPD  shape  parameter
%      M  =  number  of  independent  GPD  intensities  integrated
%  The  error  in  the  approximation  is  <0.15  dB  for
%      Pf  in  [1e-6,1e-2]
%      M    in  [2,20]
%      gamma  in  [0,0.45]
%  Exact  results  are  produced  when  M=1  or  gamma=0
%
[Pf,M,gam,hdb]=input_par_std(Pf,M,gam,nan);
for  i=1:numel(Pf)
    if  gam(i)==0
        hdb(i)=10*log10(gaminv(1-Pf(i),M(i),1));
    elseif  M(i)==1
        hdb(i)=10*log10((Pf(i)^-gam(i)-1)*(1-gam(i))/gam(i));
    else
        x1=sqrt(2)*erfinv(2*(0.5-Pf(i)));  x2=gam(i);  x3=log(M(i));
        A=[1  x1  x1^2  x1^3  x2  x2^2  x2^3  x3  x3^2  x3^3  x1*x2  x2*x3  x1*x3  x1^2*x2^2];
        [c,gambrk]=clsefun;
        ic=find(gam(i)>gambrk,1,'last');
        hdb(i)=10*log10(exp(A*c(:,ic))+1)+10*log10((Pf(i)^-gam(i)-1)*(1-gam(i))/gam(i));
    end
end
%  Coefficients  from  LSE  analysis
function  [c,gambrk]=clsefun
gambrk=[0.000  0.100  0.200  0.325  0.500];
c=[        -1.38      -3.058    -0.9907        2.783
          -0.4208      0.6683    -0.3213      -2.438
          0.03421    -0.2158  -0.07045      0.3319
        -0.002611    0.01936    0.01319  -0.01695
                7.37        10.85    -0.9404      -9.392
            -9.575      -6.365        9.632        11.13
              46.49      -17.44      -14.65      -6.268
                2.36        2.591        2.593        2.367
          -0.5438    -0.5592    -0.5776    -0.5819
          0.07318    0.07612    0.07652    0.07498
            -2.641      -3.982    -0.8378        1.977
          -0.6256      -0.928    -0.3259      0.1923
          -0.0252  -0.07776  -0.09447  -0.06795
              0.781        1.975      0.5775    -0.1522];
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D MATLAB® functions for evaluating JDC in GPD clutter

D.1 Numerical evaluation of JDC for a Rician signal in GPD clutter

function  JDC=jdc_ricegpd_num(Sdb,rho,gam,hdb)
%  JDC  =  jdc_ricegpd_num(Sdb,rho,gam,[hdb])
%      J-divergence  detection  currency  (JDC)  in  decibels  for  a  Rician  signal
%      in  unit-power  GPD  clutter  after  thresholding  as  obtained  through
%      a  trapezoidal-rule  numerical  integral
%  Parameters:  all  scalar
%      (Sdb,rho)  =  Rician  signal  SNR  (dB)  and  fraction  of  random  signal  power
%      gam  =  GPD  shape  parameter
%      hdb  =  normalized  intensity  threshold  (dB)  [omit  or  set  to  -inf  for  no  thresholding]
%
if  nargin==3,  hdb=-inf;  end
s=10^(Sdb/10);  h=10^(hdb/10);  lam=1-gam;  e=1e-4;
z1init=ncx2inv(1-e,2,2*(1-rho)*s/(1+rho*s))*(1+rho*s)/2;  %  Initialize  w/  Gaussian
z0=max(log10(h),log10(gpdiinv(e,gam,lam)));
z1=fzero(@(h)  e-(1-ricegpd_cdf(h,s,rho,gam)),z1init);  %  iterate  to  improve
z1=max(log10(2*h),log10(z1));  %  Make  sure  it's  above  threshold
Nz=max(20,ceil(20*(z1-z0)));  z=logspace(z0,z1,Nz);  %  Every  0.5  dB
f0=gpdipdf(z,gam,lam);  f1=ricegpd_pdf(z,s,rho,gam);
Jh=trapz(z,(f1-f0).*log(f1./f0));  %  Approximate  J-div  above  threshold
Jb=0;
if  h>0  %  Get  discrete  part  if  thresholding
    Pd=1-ricegpd_cdf(h,s,rho,gam);  Pf=1-gpdicdf(h,gam,lam);
    Jb=(Pd-Pf)*log((1-Pf)/(1-Pd));  Jb(~isfinite(Jb))=0;  %  In  case  Pd=1
end
JDC=5*log10(Jh+Jb);
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D.2 Approximating JDC after thresholding for a Rician signal in GPD clutter

D.2.1 JDC using the gamma approximation

function  JDC=jdc_ricegpd_apx(Sdb,rho,gam,hdb)
%  JDC  =  jdc_ricegpd_apx(Sdb,rho,gam,hdb)
%      J-divergence  detection  currency  (JDC)  in  decibels  for  a  Rician  signal
%      in  unit-power  GPD  clutter  after  thresholding  as  obtained  through
%      gamma  approximations
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      (Sdb,rho)  =  Rician  signal  SNR  (dB)  and  fraction  of  random  signal  power
%      gam  =  GPD  shape  parameter
%      hdb  =  normalized  intensity  threshold  (dB)
%
dbinv=@(X)  10..^(X/10);
[s,rho,gam,h,I01,I10]=input_par_std(dbinv(Sdb),rho,gam,dbinv(hdb),0,0);
lam0=1-gam;    lam=lam0+gam.*h;
Pf=1-gpdicdf(h,gam,lam0);  Pd=ones(size(s));
for  i=1:numel(s)
    if  h(i)>0,  Pd(i)=1-ricegpd_cdf(h(i),s(i),rho(i),gam(i));  end
end
logPf=(-1../gam).*log(1+gam.*h./lam0);
logPf(gam==0)=-h(gam==0)./lam0(gam==0);
alp1=(1+s).^2.*(1-2*gam)./(1+s.*(2+rho.*(2-rho).*s).*(1-2*gam));
bet1=(1+s)./alp1;
[a,b]=gamgam_thresh(alp1,bet1,h);
for  i=1:numel(gam)
    if  gam(i)>0,  [I10(i),I01(i)]=kld_gamgpd(a(i),b(i),gam(i),lam(i));
    else,  [I10(i),I01(i)]=kld_gamgam(1,1,a(i),b(i));  end
end
Jex=(Pd-Pf).*(log(Pd)-logPf)+Pd.*I10+Pf.*I01;
Jb=(Pd-Pf).*log((1-Pf)./(1-Pd));
Jb(~isfinite(Jb))=0;  %  for  h=0  where  Pd=1
JDC=5*log10(Jb+Jex);

D.2.2 Gamma approximation to the excess over the threshold

function  [alp1,bet1]=gamgam_thresh(alp0,bet0,h0)
%  [alp1,bet1]  =  gamgam_thresh(alp0,bet0,h0)
%      Gamma  approximation  to  excess  over  the  threshold  (EOT)  of  a  gamma  distribution
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      (alp1,bet1)  =  output  gamma  distribution  shape  and  scale  parameters
%      (alp0,bet0)  =  input  gamma  distribution  shape  and  scale  parameters
%      h0  =  threshold  on  input  gamma  distribution
%
Fh0=gamcdf(h0,alp0,bet0,'upper');  Fh1=gamcdf(h0,alp0+1,bet0,'upper');
Fh2=gamcdf(h0,alp0+2,bet0,'upper');
u=(alp0.*bet0.*Fh1-h0.*Fh0)./Fh0;
P=(alp0.*(alp0+1).*(bet0.^2).*Fh2-2*h0.*alp0.*bet0.*Fh1+h0.^2.*Fh0)./Fh0;
u2=u.^2;  alp1=u2./(P-u2);  bet1=(P-u2)./u;
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D.3 KL divergence functions

D.3.1 KL divergence between gamma and GPD models

function  [I10,I01]=kld_gamgpd(a,b,gam,lam)
%  [I10,I01]  =  kld_gamgpd(a,b,gam,lam)
%      Kullback-Liebler  divergence  between  gamma  and  GPD  models
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      (a,b)  =  gamma-distribution  shape  and  scale  parameters
%      (gam,lam)  =  GPD  shape  and  scale  parameters
%
[a,b,gam,lam]=input_par_std(a,b,gam,lam);
N=numel(a);  g0=zeros(size(a));  g1=g0;
del=b.*gam./lam;  a0=max(1,floor(a));  a1=ceil(a);
for  i=1:N
    g0(i)=gnr43375(a0(i)-1,del(i));
    if  a1(i)>a0(i),  g1(i)=gnr43375(a1(i)-1,del(i));
    else,  g1(i)=g0(i);  end
end
Itmp1=g0+(a-a0).*(g1-g0);
I10=log(lam./b)-a-gammaln(a)+(a-1).*psi(a)+(1+1../gam).*Itmp1;
C=0.577215665;  %  Euler  constant
I01=(a-1).*(psi(1../gam)+C)+(gam.^2-1+lam./b)./(1-gam)+a.*log(b./lam)...
                  +(a-1).*log(gam)+gammaln(a);
%----------------------------------------------------------------
function  g=gnr43375(ninp,ainp)
%  g  =  gnr43375(n,a)
%      Evaluates  g=integral(@(x)(x.^n).*exp(-x).*log(1+a*x),0,inf)/gamma(n+1);
%      -->When  n  is  not  an  integer,  it  is  rounded  to  the  nearest  one
%      Reference:  Gradshteyn  and  Ryzhik,  "Table  of  Integrals,  Series,  and  Products,"
%                            2015,  Equation  4.337-5,  page  576
%
[nv,av]=input_par_std(ninp,ainp);  g=zeros(size(nv));  nmax=round(max(nv));
kf=gamma(2:nmax+1)';    eia=exp(1../av).*(-expint(1../av));
for  i=1:length(g(:))
    n=round(nv(i));
    if  av(i)/n<0.001  %  Use  an  exact  integral  here
        g(i)=integral(@(x)exp(n*log(x)-x-gammaln(n+1)).*log(1+av(i)*x),0,inf);
    else
        if  n==0,  g(i)=-eia(i);
        else
            a=av(i);  S=ones(n,1);
            for  l=(n-2):-1:0
                S(l+1)=kf(n-l-1)-S(l+2)/a;
            end
            j=(0:n-1)';  t1=((-a).^(j-n))*eia(i);
            g(i)=-eia(i)+sum((-t1+S)./kf(n-j));
        end
    end
end

58 TR 2401



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

D.3.2 KL divergence between two gamma distributions

function  [I10,I01]=kld_gamgam(a0,b0,a1,b1)
%  [I10,I01]  =  kld_gamgam(a0,b0,a1,b1)
%      Kullback-Liebler  divergence  between  two  gamma  distributions
%  Parameters:  [mix  of  scalar  and  common-dimension  matrix/vector]
%      (a0,b0)  &  (a1,b1)  =  gamma-distribution  (shape,scale)  parameters
%
c=gammaln(a0)-gammaln(a1);
I10=(1../b0-1../b1).*a1.*b1+a0.*log(b0)-a1.*log(b1)+(a1-a0).*(log(b1)+psi(a1))+c;
I01=(1../b1-1../b0).*a0.*b0+a1.*log(b1)-a0.*log(b0)+(a0-a1).*(log(b0)+psi(a0))-c;
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