Parameter Estimation
and Performance Modeling in
Generalized-Pareto-Distributed Clutter

D.A. Abraham
Technical Report
APL-UW TR 2401
January 2024
Applied Physics Laboratory University of Washington
1013 NE 40th Street Seattle, Washington 98105-6698

Contract N00024-21-D-6400 under task order N00024-22-F-8714

Approved for public release; distribution is unlimited.






UNIVERSITY OF WASHINGTON e APPLIED PHYSICS LABORATORY

Acknowledgements

This report was sponsored by the Office of Naval Research, Code 32, Undersea Signal Processing,
through Naval Sea Systems Command contract N00024-21-D-6400 under task order N00024-22-F-
8714. The author thanks Dr. J. Gelb (ARL:UT) for reviewing this report.

TR2401 i



UNIVERSITY OF WASHINGTON e APPLIED PHYSICS LABORATORY

Abstract

In active sonar systems, a clutter-dominated background is often the limiting factor affecting
detection performance. Sources of clutter typically violate the central-limit-theorem conditions that
lead to Gaussian distributed bandpass measurements, necessitating more general statistical models
to represent their effect on the system. The generalized Pareto distribution (GPD) is a common
phenomenological model for clutter, with its shape parameter representing severity through the
heaviness of the distribution tail. The focus of this report is on techniques for representing active
sonar clutter with the GPD model and assessing the degradation in detection performance as the
clutter severity increases. The GPD shape parameter is interpreted through its relationship to the
K-distribution shape parameter to understand what values are appropriate in different modeling
scenarios (e.g., ranging from mild to extremely heavy-tailed clutter). A comparison of parameter
estimators leads to one reliably providing an estimate representative of a physically realizable pro-
cess. Approximations to the design SNR required to achieve a detector operating-point specification
(i.e., the detection threshold term in the sonar equation) for the standard signals in GPD clutter
are presented as is the J-divergence detection currency when accounting for thresholding. These
simple approximations enable more realistic prediction of active-sonar detection performance by
accounting for clutter severity through the GPD model.
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1 Introduction

The performance of active sonar systems is often limited by false alarms arising from reflec-
tions of the sensing waveform off physical objects, boundaries, or other discontinuities in the ocean
environment. When these reflectors have a myriad of independent scattering elements, the cen-
tral limit theorem (CLT) dictates that the combined acoustic pressure measurement, termed re-
verberation, will follow a Gaussian distribution. Subsequent signal processing (basebanding and
matched filtering) of the bandpass reverberation measurements converts the Gaussian distribution
to a Rayleigh-distributed envelope and an exponentially-distributed instantaneous intensity. This
scenario, with its distribution chain,! defines the nominal benign background. Although sources
of reverberation satisfying the requirements of the CLT are ubiquitous, it is not uncommon to en-
counter those that do not and these interferences are often the ones driving performance. Termed
clutter in active sonar, such objects typically have too few independent elemental scatterers, which
leads to a larger number of false alarms than that expected under a benign background. From
a modeling perspective, the upper tail of the normalized envelope or intensity probability density
function (PDF) is heavier for clutter than for reverberation. For a fixed detector decision threshold,
this causes the probability of false alarm (Py) in clutter-dominated regions to be higher than in the
more benign conditions typical of diffuse reverberation or ambient noise. In systems with a variable
threshold that adapts to maintain a constant probability of false alarm, the increase required in
clutter-dominated areas results in a reduction in the probability of detection. The focus of this
report is on using the generalized Pareto distribution (GPD) to represent clutter in modeling the
detection performance of active sonar systems.

There are many statistical distributions that can be used to represent clutter [1, Sect. 7.4.3],
including ones with physical interpretations (e.g., the K and Poisson-Rayleigh distributions) and
those with phenomenological support (e.g., the GPD, Weibull and log-normal distributions). Of
these, the K-distribution will be used to interpret the severity of the GPD and to subsequently
define different regimes of interest for the GPD parameter controlling tail heaviness. A motivating
example illustrating strong support for the GPD model is found in Fig. 1 where Py is shown
as a function of the detector decision threshold for data obtained during the NATO SCARAB
1997 Experiment.? The probability of false alarm is also shown for an exponentially-distributed
intensity and the heavier-tailed K and GPD models. Although most of the data from the SCARAB
1997 Experiment were fit well by the K-distribution [3], this particular segment, which contained
reflections from steep bathymetry, is fit best by the GPD model.

The GPD was shown in [4] to arise from a modulation process between an exponentially-
distributed instantaneous intensity (representative of a benign background) and an inverse-gamma-
distributed random variable (nominally representing a random multiplicative effect). This model is
a scalar form of the more general spherically invariant random vector (SIRV) model [5]. La Cour [6]
and Gelb |7] have championed use of the GPD to represent active sonar clutter, with a focus on how
it is useful when representing the distribution above the detector decision threshold. Background
on the GPD, its SIRV genesis model, properties, and how to interpret the shape parameter ()
controlling tail heaviness are found in Sect. 2.

Although the K-distribution provides an interpretation of the GPD shape parameter when
matching the scintillation index (see Sect. 2.2), estimating v from measured data allows its use in

! A distribution chain is the sequence of statistical distributions required to represent a random signal and /or noise
as it passes through the operations comprising a signal processing chain [1, pg. 388|.
2 Acknowledgement: [2] with gratitude to Dr. C. Holland (scientist in charge, SCARAB 1997 Experiment).
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Figure 1: Probability of false alarm as a function of the normalized-intensity detector decision
threshold for data from the SCARAB 1997 Experiment [2]| along with that obtained for the K and
generalized-Pareto distributions.

signal processing algorithms and can provide a more pertinent assessment when modeling detection
performance in clutter-dominated backgrounds. Several parameter estimators for + are presented
and compared in Sect. 3. An iterative solution to the maximum likelihood estimator (MLE) for
~ was presented in [6]. However, it is unconstrained and therefore can yield values outside of the
interval [0, 0.5) for which the GPD has tails at least as heavy as the exponential distribution (y > 0)
and where the intensity has a finite variance (y < 0.5). The method-of-moments-based Bayesian
approach found in [8] for the K-distribution shape parameter is extended in Sect. 3.4 to produce an
estimator of the GPD shape parameter that always lies on the interval [0,0.5). This enables use of
the estimate in modeling and analysis requiring distributions representative of physically realizable
processes.

Modeling sonar performance in clutter often starts with forward models of the probabilities of
false alarm (Py) and detection (Py), given the signal-to-noise power ratio (SNR) and the shape
parameter of the clutter distribution. The relationship between the detector decision threshold (h)
and Py, which is defined by the cumulative distribution function (CDF') of the detector’s decision
statistic, is typically straightforward to evaluate, especially when the detector comprises a single
instantaneous intensity. Although evaluating P, for signals in heavy-tailed noise is more difficult,
there exist approximations that can be usefully accurate |1, Sect. 7.5.6]. For example, a Gaussian-
noise-background approximation was used in [9] to obtain the design SNR achieving a desired
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(Pg, Pr) operating point (i.e., the detection threshold (DT) term of the sonar equation) for signals
in K-distributed clutter. This approximation essentially uses the decision threshold dictated by
the clutter distribution in the P; model for a benign background. The approach is applied in
Sect. 4 to obtain very simple approximations to DT for deterministic and Gaussian-fluctuating
signals in GPD clutter. An interesting result of the analysis is seen in Sect. 4.3 where DT in clutter
can be approximated by DT in the benign background plus the decibel change in the intensity
decision threshold required to maintain a constant Py. The case of a detector formed by integrating
intensities is also considered and seen to yield useful approximations to DT given the detector
decision threshold. However, the relationship between h and Py for the integrated-intensity detector
is quite complicated and requires numerical evaluation (Sect. 4.2.2 & App. C.3) or an empirical
approximation (Sect. 4.2.3 & App. C.4). The empirical approximation to the decision threshold
provides a simple means for approximating DT in GPD clutter for the integrated-intensity detector,
but comes at the expense of a larger error or a smaller viable parameter space than the single-
intensity detector.

The final section of this report (Sect. 5) considers the J-divergence detection currency (JDC) [10]
for the basic sonar signal models in GPD clutter. JDC is an alternative detection performance mea-
sure to the traditional (Py, Pf) operating point, providing a simple scalar measure of performance
that can easily be accrued over multiple measurements (the linear quantities simply add) and can be
extended throughout the signal and information processing chain. Its basic application to a Rician
signal (which contains both deterministic and Gaussian-fluctuating signals) in a benign background
was covered in [10]. Given the complicated form of the intensity PDF for a signal in clutter, a nu-
merical evaluation of J-divergence is mandated (Sect. 5.2). However, when incorporating the effect
of thresholding a decision statistic prior to combination across measurements (Sect. 5.3), accurate
approximations can be employed to more easily obtain JDC for a Rician signal in GPD clutter.

In addition to the techniques and analysis presented in Sects. 3-5 for parameter estimation and
sonar performance modeling in GPD clutter, MATLAB® functions implementing the key results are
provided in the appendices.

2 Genesis and properties of the generalized Pareto distribution
(GPD)

The generalized Pareto distribution (GPD) [11, Ch. 20] is a member of the class of spherically
invariant random vector (SIRV) models [5,12], which are formed by modulating a multi-variate,
zero-mean, Gaussian-distributed complex envelope by an independent, non-negative random scalar.
The GPD is obtained in this formulation [4] when the square of the modulating random scalar
follows an inverse gamma distribution (i.e., one over a gamma-distributed random variable). This is
more easily described by characterizing the instantaneous intensity of a single sample as the quotient

Y = WO [units: power (1)
where Y, follows an exponential distribution with mean A and W is an independent, gamma-
distributed random variable with shape parameter 1/ and scale parameter «. In this formulation,
the exponentially-distributed numerator is representative of a Gaussian-distributed complex enve-
lope and the randomness of the gamma-distributed W increases the tails of the PDF of Y, which
allows representing active-sonar clutter exhibiting higher false alarm rates than those observed in

TR 2401 3



UNIVERSITY OF WASHINGTON e APPLIED PHYSICS LABORATORY

a benign background. Although the GPD does not have a genesis as a physical-statistical model
(as does the K-distribution), it can be quite effective at representing heavy-tailed sonar clutter, as
shown in [6,7] and the motivating example seen in Fig. 1. As described in Sect. 2.4, it is also the
limiting distribution describing the upper tail of many statistical models representing heavy-tailed
data.

In the statistical analysis of clutter in active sonar systems, models can be applied to the
modulus (i.e., the envelope) or squared modulus (i.e., the instantaneous intensity) of the complex-
matched-filter response. These are most easily identified through their units. In this report, the
complex-matched-filter response and its modulus will be defined as having “field” units, which
could be pressure or a quantity proportional to pressure. The squared modulus will be defined as
having “power” units in representation of a generic power quantity obtained by squaring a field
quantity. Common power quantities include squared pressure and acoustic intensity. The theo-
retical analysis often exploits perfect normalization, which produces a unitless quantity. When
there might be confusion as to how these quantities are formed, a description is provided (e.g.,
[unitless: normalized power| when formed from a ratio of two power quantities).

2.1 Distribution, moments, and scintillation index

The characteristics of the generalized Pareto distribution can be found in [11, Ch. 20] or |1, pgs.
302 & 417|. The following definitions use the notation found in the latter reference. The probability
density function of the matched-filter intensity is

1
Iy(y) = —— for y >0, (2)
A1+

where 7 is the shape parameter and A > 0 is the scale parameter. By letting v — 0 in (2), it can
be shown? that fy (y) — e_y/’\/)\, which is an exponential distribution with mean A. Increasing -y
from zero clearly slows the decay of the PDF at large arguments, implying it represents a worsening
of the clutter.

The GPD cumulative distribution function,

1
Fy(y) =1— ———= for y >0, (3)
(1+3%y)

is easily obtained by integrating (2). When setting a decision threshold as a function of the prob-
ability of false alarm (Py) and the GPD shape and scale parameters, (3) can easily be solved to
yield

1
h= A (]ﬂ - 1) [units: power]. (4)

The mean of the distribution is

A
ElY] = ﬁ for v <1 |units: power] (5)

3 Apply L’Hépital’s rule to log fy (y).

4 TR2401



UNIVERSITY OF WASHINGTON e APPLIED PHYSICS LABORATORY

and the variance is

AZ
(L =7)*(1—27)

These are easily combined to produce the scintillation index (SI), which is the ratio of the variance
of the instantaneous intensity to the square of its mean,

Var{Y} = for v < 0.5  [units: power?]. (6)

[ Var{Y} 1
C(BlY)? 12y

[unitless: normalized power?]. (7)

The scintillation index is a useful measure of PDF tail heaviness relative to the exponential distri-
bution, for which SI = 1. Heavier-tailed distributions have a larger SI and lighter-tailed models a
smaller one (e.g., a deterministic signal has SI = 0).

From [1, pg. 302|, the kth moment of the GPD is

AT (k+ 1) (v — k)
YT (y1)

E[Y’“] = for v < 1/k  |units: power”|. (8)

This illustrates that for a given value of -, only the moments up to k < 1/~ exist.

Less common forms of the distribution:

For many heavy-tailed clutter models, it is more convenient to work with the instantaneous
intensity as opposed to the envelope. For example, it can be seen from (8) that odd moments of the
envelope (for which £ = 0.5, 1.5, 2.5, ...) do not simplify to rational functions of 7. However, as
will be seen in Sect. 3, it can sometimes be advantageous to work with envelope data. The envelope
is formed from the instantaneous intensity by the simple transformation X = VY [units: field|,
which in turn transforms the CDF in (3) to

Fe(z)=Fy(z®)=1— % for 2 > 0. (9)

5
(1+ 32?)
Differentiating this then produces the PDF of the envelope,

fx(z) = 2 for x > 0. (10)

AL+ 3a2)"

The moments of the envelope are straightforward to construct from (8).

The final step backwards in the distribution chain to the complex envelope (Z) producing a
GPD instantaneous intensity (e.g., Y = |Z|?) can be made assuming the phase is uniformly random
on [0,27). This then results in the PDF

1
f2(2) = A1+ %’2’2)771+1 (11)

for z in the complex plane.
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2.2 Interpreting the shape parameter

As with other heavy-tailed models, the shape parameter () of the GPD dictates the severity
of the clutter it represents. As noted above, v = 0 represents a benign background and increasing
~ from zero increases tail heaviness. To aid in the interpretation of the GPD shape parameter, it
is related here to the physical model of the K-distribution by equating scintillation index. First,
however, it is interesting to note that the ratio in (1) can be interpreted as an instantaneous intensity
(Y,) normalized by an estimate of the background power (W). In particular, a cell-averaging
constant-false-alarm-rate (CA-CFAR) normalizer |1, Sect. 8.6.1] operating in a benign background
produces data following the GPD with v = 1/L when the background power estimate is the average
of L independent intensity samples* L is approximately the product of the waveform bandwidth
|units: Hz| and the temporal extent |[units: s| of the background estimation window. The large
quantities of stationary data required to estimate what can be small probabilities of false alarm
typically can only be obtained after normalization. Although this is appropriate when assessing
system performance, low quality normalizers (e.g., those with small values of L) can obscure the
underlying clutter statistics and should therefore be taken into account when analyzing the clutter
source is the primary objective.

Under the SIRV representation, the shape parameter of the GPD must be non-negative (y > 0)
because the shape parameter of the gamma distribution describing W must be positive. Although
negative values of v may be permitted by the functions shown in Sect. 2.1, they represent distribu-
tions with lighter upper tails than the nominal exponential distribution and impart an upper limit
on their argument. As such, they are generally deemed inappropriate when representing active
sonar clutter. Letting v tend to zero causes the distribution of W to tend to an impulse function at
W =1 (note that the mean of W is one and its variance is 7), which implies that Y is exponentially-
distributed when v = 0. As ~ increases from zero, the tails of the distribution increase, as can be
seen in Fig. 2, which displays the probability of false alarm when a single (perfectly) normalized
intensity is compared to the detector decision threshold.

A phenomenological application of the GPD might require a large value of « to accurately rep-
resent extreme observations of active-sonar clutter. However, the variance of the instantaneous
intensity under the GPD model is infinite when v > 0.5. This suggests limiting GPD shape param-
eters to be on the interval v € [0,0.5) to represent physically realizable random processes. Within
this regime, a lexicon for describing clutter can be obtained by mapping the first two intensity
moments of the GPD to those of the K-distribution to obtain an equivalent K-distribution shape
parameter,

1
a==-2 (12)

Y
or v = 1/(a + 2) when starting with a.. The physical interpretation of o as being proportional to
the number of independent scatters contributing to the clutter [13] can then be employed to define
the set of clutter regimes shown in Table 1. Because the first two intensity moments for the GPD

and K-distributions are the same under (12), they have the same scintillation index,
1 2

SI = =1+ — 13
1—2v +a (13)

for v € [0,0.5) and o > 0. This relationship illustrates that the benign-background case of an
exponentially-distributed instantaneous intensity, for which SI = 1, occurs when v — 0 and a — oc.

4The GPD is proportional to an F-distributed random variable with v, = 2 and vs = 2/7 degrees of freedom.
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Figure 2: Probability of false alarm as a function of the normalized-intensity detector decision
threshold for generalized-Pareto-distributed clutter with different shape parameters. The variance
of the instantaneous intensity is only finite when v < 0.5.

Table 1: Lexicon for describing heavy-tailed noise.

Regime in Regime Regime in How

scintillation in GPD heavy

index (SI) K shape shape tailed?  Characterization
1<SI<1.2 I0<a<x 0<~<0.08 scarcely diffuse noise or reverberation

(very close to benign bkgnd.)

1.2<SI<1.4 b<a<10 0.08<~v<0.14 mildly diffuse clutter (e.g., rocky
ridge, seaweed, fish schools)

1.4 <SI <2 2<a<bh 0.14 <~ < 0.25 moderately discrete, multi-faceted clutter
(e.g., oil rig or fragmented
shipwreck)

2<SI<9 025 <a<2 025<vy<044 very single dominant scatterer
(e.g., with very compact
structure)

SI>9 0<a<025 044 <v<0.5 extremely not explained by a single
process (via K-distribution)

TR2401 7
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As « decreases to the point where there are too few independent scatterers for the central limit
theorem to yield an adequate approximation to a Gaussian-distributed complex envelope, the upper
tail of the intensity distribution becomes heavier and v increases.

The first four regimes seen in Table 1 describe increasing severity in terms of tail heaviness
along with potential examples of clutter sources. The examples shown in Fig. 2 illustrate how the
heavier tails impact the probability of false alarm. When « equals 0.5, which equates to v = 0.4, the
K-distribution interpretation for scatterers having an exponentially-distributed size is that there is
a single dominant scatterer [13, eq. 15]. Accounting for some variation in the size distribution, the
regime for which a € (0,0.25] or v € [0.44,0.5) is not easily explained by a single process.

When data are observed with extremely heavy tails (v > 0.44 or o < 0.25) or in the upper end
of very heavy tails, it may be more appropriate to use mixture models [14] or the clutter sources
should be viewed as discrete interferences with average intensities exceeding the noise background.
Raising the detector decision threshold is not likely to control these types of sources—their echoes
are generally large enough relative to the local background for them to be detected with ease. As
such they are typically handled by (or cause problems in) subsequent information processing such
as tracking and classification.

2.3 The GPD is a closed distribution family under thresholding

A useful property of the GPD is that it is closed under the process of thresholding. That is, the
distribution of the excess over a threshold (given it is exceeded) is another GPD. Suppose

Z =Y —hgivenY > h, (14)
where Y is GPD with shape v and scale A. The PDF of 7 is

_ fy(z+h) _ 1
1= Fy(h) 5\<1 +72/5\)r1+1

fz(2) for z >0, (15)

which is GPD with the same shape parameter and a scale parameter A= A+vh. The self-replicating
memoryless property of the exponential distribution can be seen by setting v = 0, so the excess
over the threshold is exponentially distributed with mean A just like the unthresholded intensity.

The importance of this result lies in the ability to estimate the shape parameter from thresholded
data, which can be helpful when analyzing active-sonar clutter.

2.4 The GPD is a limit distribution for the excess over the threshold

When ~ = 0, the GPD simplifies to an exponential distribution with mean A, which has PDF

e~ Y/
frly) = = for y 2 0. (16)

The decay of the PDF is clearly exponential with y. For o > 0, it can be seen from the PDF in (2)
that the decay tends to an inverse power-law as y increases. This tail behavior can be characterized
by considering the distribution of the excess over the threshold (EOT). In Sect. 2.3, this was shown
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to be another GPD with the same shape parameter and a different scale, so the EOT for the GPD
always has an inverse power-law tail behavior when v > 0.

One of the arguments made in [6] for use of the GPD to represent sonar clutter was that it is one
of the limiting distributions of the EOT. The limit theorem [15,16] dictates the EOT distribution
for random variables with a domain y > 0 tends to either an exponential or generalized Pareto
distribution as the threshold increases to infinity. This implies that the GPD could be a good fit
above some finite threshold for distributions having the inverse power-law tail behavior. However,
the argument weakens as the threshold decreases and does not apply when the tail behavior has
exponential decay, as is the case for the K-distribution. Thus, whether the GPD is appropriate
can depend on how far out into the tails is of interest and whether the underlying distribution has
inverse power-law tail behavior or not.

Recall that the GPD is a scaled F' distribution, which is also representative of an exponentially-
distributed instantaneous intensity normalized by a cell-averaging estimate of the power in a benign
background. In this example the normalization process transforms a distribution with exponential
decay in the tails to one having an inverse power-law behavior. With a high-quality normalizer,
however, this might not be apparent except at the highest threshold levels. Conversely, a low-quality
normalizer may require the GPD model even at low thresholds. When the clutter statistics are used
to infer the state of nature (e.g., a characteristic or condition of the clutter source), it is clear that
the normalizer needs to be designed so it does not adversely affect the inference or that the inference
takes into account the normalization.

~

In the case of a normalizer, it is the division by an estimate of the background power (\) that
causes the change in tail behavior. The background power estimate can be assumed to have expo-
nential tail behavior by noting that averaging lightens heavier tails toward the Gaussian distribution
(via the central limit theorem). It is then straightforward to show that inverting a random variable
with exponential tail behavior produces one following an inverse power-law. That the power-law
tail behavior dominates in the product between 1/ X and the test cell in a normalizer can be seen
using Mellin transforms, where the transform of the product of two independent random variables
is the product of their individual transforms. The Mellin transform essentially provides a spectrum
with a power series kernel [17, pg. 256] and some distributions with power-law tail behavior (e.g.,
the F' distribution and the inverse of many exponential-tail-behavior PDFs) exhibit a discontinuity
to infinity at their power, which dominates the transform of the lighter-tailed term.

3 Estimating the GPD shape and scale parameters

The GPD shape parameter () provides a measure of the heaviness of the clutter distribution
tail, which impacts false-alarm performance in active sonar systems. Several techniques for esti-
mating v are presented and evaluated in this section. When shape-parameter estimates are utilized
in performance prediction (e.g., when evaluating the design SNR in Sect. 4 or the J-divergen