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Abstract

Estimation of the location and motion of an object of interest is one of the primary inferential
objectives in underwater acoustical remote sensing. In active sensing systems, this often begins
with estimation of range through time delay and radial velocity by exploiting the Doppler effect.
In systems that project a sequence of pulses, radial velocity can also be estimated from multi-
ple time-delay measurements using waveforms insensitive to Doppler. The focus of this report
is on performance bounds for estimation of time delay and radial velocity when using multiple
frequency-modulated pulses that are not restricted to being narrowband. An emphasis is placed
on the case of estimating radial velocity when time delay is also unknown while using combina-
tions of the basic sonar waveforms: continuous-wave (CW), linear-frequency-modulated (LFM),
and hyperbolic-frequency-modulated (HFM) pulses. A review of single-pulse bounds on the vari-
ance of unbiased estimators (i.e., Cramér-Rao lower bounds) is presented to facilitate development
of bounds when combining echoes from multiple pulses. The pulse characteristic time-frequency
properties comprising the single-pulse bounds are employed to provide multiple-pulse bounds that
are straightforward to evaluate. As might be expected, the case of coherent echoes (i.e., echoes
having a common bulk phase) generally leads to a lower bound on estimation performance than
when the echoes are incoherent (i.e., they have different bulk phases). A number of examples are
used to demonstrate multiple-pulse estimation performance. An important theme seen throughout
the examples is that diversity across multiple pulses can have an outsize effect on parameter esti-
mation (i.e., the bound decreases by a factor greater than the number of pulses). For similar types
of pulses, spectral diversity improves time-delay estimation and temporal diversity aids estima-
tion of radial velocity. Independent of this, diversity in the time-frequency character of the pulses
(e.g., combining up- and down-sweeping LFM or HFM pulses) can provide a similarly significant
improvement over the performance of any of the pulses alone.
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1 Introduction and background

A common inferential objective in active sensing systems is estimation of the location and radial
velocity of an object of interest (OOI). This is typically accomplished using time delay to obtain
range, beamforming for the angle pointing to the OOI, and Doppler to estimate radial velocity. The
focus of this report is on performance bounds for estimation of the OOI’s time delay and radial
velocity, with an emphasis on the latter when the former is unknown and when it is performed
using multiple frequency-modulated pulses.

The primary bound evaluated in this report is the Cramér-Rao lower bound (CRLB) on the
variance of unbiased parameter estimators [1, Sect. 6.3.3]. Uses for the CRLB and prior work
related to estimation of time delay and radial velocity are described in Sect. 1.2. A review on
modeling estimation performance when using a single pulse is presented in Sect. 2 for the ba-
sic sonar waveforms, which include continuous-wave (CW), linear-frequency-modulated (LFM),
and hyperbolic-frequency-modulated (HFM) pulses. An introductory discussion on why waveform
choice is paramount when estimating radial velocity can be found in Sect. 1.1. Modifications of the
analysis from the nominal two-way monostatic sensing geometry to one-way and bistatic propaga-
tion as well as accounting for simultaneous estimation of the angle of arrival are covered at the end
of Sect. 2.

The single-pulse bounds for estimating time delay and radial velocity are defined in Sect. 2.4
using time-frequency characteristics extracted from the instantaneous frequency of the sensing
waveform. When time delay is unknown, the CRLB on radial-velocity estimation is inversely pro-
portional to the linear-quantity signal-to-noise power ratio (SNR), the square of the pulse duration,
and the square of the center frequency for CW pulses or the square of the bandwidth for LFM pulses.
This makes CW pulses a popular choice for estimating radial velocity. However, their detection
performance suffers when reverberation dominates the background and the OOI has a low radial
speed. In these scenarios, it is common to estimate radial velocity using time-delay measurements
obtained from sequentially projected LFM or HFM pulses. This approach is reviewed and analyzed
in Sect. 3, including a presentation of the geometric modeling required to estimate time delay and
radial velocity from multiple pulses. The multiple-pulse performance bounds for this approach are
constructed from the bounds on time-delay estimation using single pulses, the times at which the
pulses are projected, and their Doppler-dependent biases in the measured time delays. Although
the single-pulse bounds are inversely related to bandwidth, increasing the temporal spread over
which the pulses are projected can improve estimation of radial velocity to be comparable to that
achieved by CW pulses with their inverse dependence on center frequency.

When the time between pulses is large, the bulk phase1 of an echo from the OOI is likely to
change owing to variations in the sensing conditions (e.g., from platform motion or time-varying
oceanographic conditions). The time-delay-based approach described in Sect. 3, which works in
this scenario, can be described as incoherent processing because it does not exploit the bulk phase
of each echo after matched-filtering. However, pulses that are projected near enough to each other
in time and frequency are likely to have the same bulk phase in their echoes. This permits coherent
processing between the echoes, which generally results in better estimation performance than in-
coherent processing. The CRLBs for joint estimation of time delay and radial velocity under these

1The bulk phase of an echo represents the effect of propagation through the underwater acoustical channel and
reflection off the OOI. For example, reflection off the surface imparts a sign inversion, which is a 180◦ phase shift.
Total internal reflection from the bottom [1, Sect. 3.2.7.5] changes the phase in a manner dependent on the properties
of the water column, bottom, and the angle of incidence.
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two conditions of coherency and incoherency between echoes from orthogonal pulses are presented
in Sect. 4 using the characteristic time-frequency parameters and projection times of each pulse,
with derivation relegated to the appendix. The goal of multiple-pulse radial-velocity estimation
is often to shift the performance of broadband waveforms from being dominated (inversely) by
bandwidth to being driven by center frequency, as is the case for CW pulses. The CRLBs for
coherent echoes are seen to achieve this goal when they satisfy certain diversity conditions, whereas
incoherent echoes maintain the bandwidth dependence and therefore rely on temporal spread to
achieve high-quality estimates of radial velocity.

The bounds on performance for estimating radial velocity and/or time delay from coherent
and incoherent echoes are evaluated for a number of examples in Sect. 5. These include comb
waveforms (Sect. 5.1), sequences of identical pulses (Sect. 5.2), reconstitution of an existing LFM
pulse (Sect. 5.3), combinations of up- and down-sweeping LFM pulses (Sect. 5.4), and FM-CW
pulse pairs (Sect. 5.5). These examples illustrate the bandwidth or center-frequency dependence
described above and elucidate how diversity in the projection times of the pulses or their time-
frequency coupling can improve estimation performance.

Although there is novel material in this report, there is a significant amount of background on
estimating time delay and radial velocity in active sensing systems. This is presented to allow the
report to be reasonably self-contained, with the goal of providing enough details for the reader to
apply the material to their own pulse or pulse combinations. The majority of results found in the
journal articles cited in Sect. 1.2 are dense enough with mathematical derivations to inhibit their
use by those primarily interested in the design or analysis of sensing systems employing multiple
pulses for estimating time delay and radial velocity. In contrast, the performance bounds described
in Sect. 4 for multiple coherent or incoherent echoes are straightforward enough to evaluate from
the individual-pulse characteristic time-frequency parameters presented in Sect. 2.3 that they can
be applied directly to the development and analysis of combinations of the standard sonar pulses
for the purpose of estimating time delay and radial velocity.

1.1 Waveform choices for estimating radial velocity

Choosing active sensing waveforms is an important part of the sonar design process. Only a brief
summary of some of the more common options is presented here; other resources include [2–4]. The
sensing objectives of detecting an OOI and estimating its range and radial velocity robustly across
diverse environmental conditions usually results in no single waveform being universally applicable.
As seen below, this generally leads to projecting multiple similar or dissimilar waveforms in each
“ping” (i.e., one cycle of projecting one or more pulses followed by a measurement period) or
delaying radial-velocity estimation until echoes from multiple pings have been detected. In addition
to choosing the sensing waveform(s), the associated detection processing (including normalization)
and radial-velocity estimator need to be defined. For Doppler-sensitive waveforms or multiple-pulse
combinations that are processed coherently, this generally involves implementation of a Doppler
filter bank [1, Sect. 8.7.1] with the Doppler channel in which the peak occurs providing a coarse
estimate of radial velocity. Although the Doppler filter bank is often adequate for detection, a
refined estimation of time delay and Doppler is generally necessary to achieve the full potential
in estimation performance, especially at high SNR where the accuracy can be significantly better
than the size of a sonar resolution cell [1, Sect. 8.5.1.2].

The most popular waveform choice for estimating radial velocity is the CW pulse, owing to its
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simple projection and processing and the aforementioned inverse dependence on center frequency in
the CRLB. However, CW pulses have poor temporal resolution, which means their detection per-
formance suffers when the background is dominated by reverberation. Because underwater acoustic
reverberation arises from reflections off boundaries (which are stationary or slowly undulating) or
slowly moving objects (e.g., bubbles or fish) it primarily impacts OOIs with a low radial speed
(i.e., “low Doppler” echoes). When an OOI has a large enough radial speed (i.e., “high Doppler”),
its echo is shifted spectrally away from the reverberation. This allows operation in a noise-limited
regime where detection performance improves with the energy in the projected pulse.

Time delay

D
op

pl
er

CW pulses

HFM 
pulse

Ambiguity 
function

LFM pulse
long

short

Figure 1: Depiction of the ambiguity function for the basic sonar pulse types.

The ambiguity function of a waveform [1, Sect. 8.3] is useful in interpreting its performance
with respect to estimation of time delay and radial velocity. For example, the depictions in Fig.
1 illustrate how a long CW pulse is narrow in the Doppler dimension but broad in time. While
shortening the CW pulse reduces its susceptibility to reverberation (by allowing fewer scattering
points in its sonar resolution cell), it degrades estimation of radial velocity and potentially dimin-
ishes detection performance in ambient noise if there is a corresponding reduction in the projected
energy.

When low-Doppler OOIs are a priority, broadband waveforms can improve detection in rever-
beration (again, by reducing the temporal extent of the sonar resolution cell, which is inversely
proportional to bandwidth) and reduce the variance of the range estimate without affecting the
projected energy. However, this comes at the expense of a more complicated estimation of radial
velocity. For example, use of LFM or HFM pulses leads to a coupling between delay and Doppler,
which is exhibited by the angled ridges in Fig. 1. This coupling makes it difficult to simultaneously
obtain accurate estimates of time delay and radial velocity from a single LFM or HFM pulse. It has
also earned the pulses a reputation for being insensitive to Doppler (e.g., see [5,6] or [1, Sect. 2.2.6]).
The advantage of this Doppler tolerance comes from needing only a single matched filter to detect
echoes having a wide span of radial velocities. The slow decay along the ridge of the ambiguity
function implies there is only a small loss in SNR when there is mismatch in Doppler between the
echo and the matched-filter replica. In applications where one parameter is known (e.g., the radial
velocity), however, the narrowness of the ambiguity-function ridge in either dimension individually
implies these waveforms will provide a high-quality estimate of the unknown parameter.

When delay and Doppler are both unknown, the ambiguity function of an ideal waveform would
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be concentrated at the origin in both dimensions. Such ambiguity functions are usually referred
to as having a “thumbtack” shape, with a narrow main lobe at the origin above a broad plateau
extending in both dimensions. Although there are a number of broadband Doppler-sensitive wave-
forms with thumbtack-like ambiguity functions that permit simultaneous high-quality estimation
of both parameters, they often have detrimental effects that limit their applicability. As noted
in [7], their implementation is hindered by the narrowness of the ambiguity function in the Doppler
dimension, which requires many filter channels (and cannot exploit the fast Fourier transform as
is done for CW-pulse Doppler filter banks [1, Sect. 8.7.1.4]). A compromise might be found in the
multitone sinusoidal FM waveform designs found in [8], which provide control over the size of the
main lobe in the thumbtack-like ambiguity function. The wide plateau of these ambiguity func-
tions, however, causes such waveforms to be reverberation-limited for a much wider span of radial
velocities than CW pulses. Although this is similar to LFM and HFM waveforms, it implies false
alarms from clutter affect a larger number of Doppler channels than for CW pulses. Broadband
Doppler sensitive waveforms with thumbtack-like ambiguity functions are not a focus of this report;
however, the results can be applied to those formed by frequency modulation.

In some applications, radial velocity is estimated after projecting a sequence of identical LFM
or HFM pulses. When these are spaced closely in time, they can be processed coherently using
a Doppler filter bank constructed from replicas consisting of the full Doppler-scaled sequence of
pulses. This produces a broadband Doppler-sensitive waveform with the desired inverse dependence
on center frequency in the radial-velocity CRLB and a narrow main lobe in the ambiguity function.
In contrast to the pedestal in thumbtack-like ambiguity functions, however, the FM-pulse-train
ambiguity function exhibits very high sidelobes occurring at regular intervals. An alternative
approach is to combine the echoes from the pulses incoherently, as would be required when the
inter-pulse delay times are large (e.g., across multiple pings). In this approach, which is covered
in detail in Sect. 3, a single matched filter provides time-delay estimates from the sequence of
echoes. Mismatch in Doppler between the echoes and the matched-filter replica incurs a small loss
in SNR, as was mentioned above, and a bias in the time-delay estimates that is unknown because it
depends on the Doppler mismatch. Combining the biased time-delay estimates over multiple pulses,
however, provides an unbiased estimate of the time delay (and therefore an unbiased estimate of
the OOI range) and a potentially high-quality estimate of the radial velocity. However, only the
echoes that are detected and associated with the OOI can be exploited and the association process
is prone to errors in high-clutter environments. Nevertheless, this is a popular approach to handling
low-Doppler echoes.

A generalization of the basic sonar pulses (CW, LFM, and HFM) can be found in the power-
law-frequency-modulation (PLFM) waveform presented in [7]. The PLFM allows some adjustment
of the Doppler sensitivity, at the expense of slightly poorer performance in reverberation and
potentially requiring more than one matched filter (e.g., a small Doppler filter bank). In addition
to providing an overarching framework to describe the basic sonar pulses, the PLFM waveforms
have the potential to provide a computationally lighter detector structure than many broadband
Doppler-sensitive waveforms (i.e., fewer Doppler channels) and competitive multiple-pulse radial-
velocity estimation.

It is quite common to use more than one type of pulse in an active sensing system. The most
common example [9,10] is the combination of a CW pulse for estimating radial velocity and an FM
pulse for accurate range estimation and protection against reverberation. Although the waveforms
are processed separately in most applications, they can be combined coherently to some advantage
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(Sect. 5.5). Simultaneous projection of multiple CW pulses in a “comb” waveform can provide
improved time-delay estimation (Sect. 5.1). Finally, an example of a broadband pulse pair that
achieves the desired center-frequency dependence of the radial-velocity CRLB can be found when
combining up- and down-sweeping LFM or HFM pulses (Sect. 5.4).

The tools presented in this report allow evaluation of the potential that different multiple-pulse
combinations might have in estimating time delay and radial velocity. However, it is important
to consider all aspects of the sensing problem, which starts with detection processing (e.g., banks
of matched filters and normalization) and includes post-detection information processing such as
tracking and classification. The impact of waveform properties on tracking performance illustrated
in [11] and the frequent use of motion to classify OOIs through moving target indicators [12, Sect.
1.7.2] demonstrate how important it is to the overall system design.

1.2 Cramér-Rao lower bounds

When designing an active sonar system to meet a specification, the first priority in choosing
sensing waveforms is detection performance, which is controlled by the projected energy in noise-
limited environments and by bandwidth when reverberation dominates. Owing to the inherent
difficulty in predicting the performance of tracking and classification algorithms, the most important
consideration after detection is typically how well range (via time delay) and radial velocity are
estimated. The Cramér-Rao lower bound (CRLB) provides a metric for estimation performance
that is straightforward to evaluate, even when the design exploits multiple pulses either coherently
or incoherently (Sect. 4).

The CRLB describes the minimum variance attainable by any unbiased estimator of a parame-
ter. The reader is referred to [13, Ch. 3] for a thorough description of the CRLB or [1, Sect. 6.3.3]
for a brief introduction. An unbiased estimator is one whose average error is zero. An example
of a biased estimator is when there is Doppler mismatch between an LFM or HFM echo and the
replica used in the matched filter. The peak response of the matched filter will on average occur
at a time offset from the true delay, so the time-delay estimate is biased. In Fig. 1, the matched
filter response under mismatch is (essentially2) represented by a horizontal slice above or below the
origin, where the peak response does not occur at the correct delay.

When the variance of an estimator achieves the CRLB, it is called an “efficient” estimator. Un-
fortunately, the theory surrounding the CRLB does not dictate which estimator might be efficient,
except for maximum likelihood estimators (MLEs) when taken asymptotically as the number of
measurements grows infinite. Estimators using a finite number of measurements need to be assessed
individually to determine if they are efficient or not. However, the asymptotic result is useful in
the present application at high SNR because estimates of time delay and radial velocity formed
by maximizing the matched-filter response can be treated as an MLE employing a large number
of weaker measurements, so it is therefore approximately efficient. Under the assumption that a
parameter estimator is efficient or nearly so, the CRLB can be used to approximate its variance.
Coupling this with an assumption of Gaussian-distributed errors (which also arise asymptotically
for MLEs) allows formation of confidence intervals for parameter estimates [1, Sect. 6.3.8]. Confi-
dence intervals or the CRLB itself can also be useful when designing waveforms or pulse trains to
achieve a desired level of estimation performance.

2As described in [1, Sect. 8.3.1.3], the response of a single filter to an echo with a given Doppler is represented by
a time-reversed ambiguity function evaluated at the relative Doppler of the echo; see [1, eq. 8.137].
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It is important to note that CRLBs represent the variance of what are termed “small” errors,
which arise when the estimate is within half the Rayleigh resolution [1, Sect. 8.5.1] of the true
value of the parameter. This inherently takes some minimum amount of SNR to occur reliably.
As SNR decreases, the probability of a “large” error increases and the variance in any practical
estimator tends to exhibit a sharp rise above the CRLB at some “threshold” SNR. One approach
for representing the large errors can be found in [14] where the estimator is modeled as having a
mixture of small and large errors, with the latter depending on the extent of a pre-defined search
region. Only the CRLB and its small-error interpretation are considered in this report.

An advantage of CRLBs is that they are often easier to evaluate than a theoretical analysis
of the bias and variance of a parameter estimator. The process starts with a statistical model for
the measurements that depends on the parameters of interest and any other unknown parameters
required to describe the signal and noise. When there are multiple parameters, their CRLBs are
obtained from the diagonal elements of the inverse of the Fisher information matrix (FIM). The
FIM characterizes how the information in the measurement applies to each unknown parameter
individually and how it is coupled across each pair of parameters. More information on an individual
parameter (i.e., a higher-valued diagonal element in the FIM) implies a higher quality parameter
estimate when all other parameters are known. By employing the inverse FIM, the CRLB captures
the coupling (identified by non-zero cross terms in the FIM) across all of the unknown parameters.
When two unknown parameters are coupled, lack of knowledge about one degrades estimation of
the other. For example, the CRLB for estimating radial velocity when using an LFM pulse is
inversely proportional to the square of the center frequency when time delay is known. However,
when time delay is unknown, the coupling changes the inverse dependence to be on the squared
bandwidth, which is usually significantly smaller than the center frequency. The lack of knowledge
about time delay adversely affects estimation of the radial velocity and vice versa. When evaluating
the CRLB for a parameter, only unknown and coupled parameters need to be included.

In many systems, the angle of arrival of the echo is also unknown and must be estimated
using an array of sensors. CRLBs for the joint estimation of the delay, Doppler, and arrival-angle
parameters can be found in [15]. A classic analysis of angle estimation using a line array can be
found in [16], as well as in [14] for the closely related problem of estimating the frequency of a
sinusoid. When the OOI is in the far-field of the array and the signal is considered narrowband
with respect to the array processing, it is shown in Sect. 2.4.4 that an appropriate choice of the
origin of the sensor array decouples arrival angle from both time delay and Doppler. This permits
the omission of arrival angle among the unknown and coupled parameters in the analysis.

In active sensing, the FIM and CRLBs for estimating delay and a Doppler parameter depend
on temporal and spectral characteristics of the projected pulse that can be crafted in terms of
derivatives of the waveform ambiguity function [17, Ch. 5], [18, Sect. 10.2.1], [3, pg. 180] or the
instantaneous frequency of constant-envelope frequency-modulated pulses [1, Sect. 8.5]. Waveforms
with amplitude shading are only marginally more difficult to evaluate [3, pg. 188]. These terms
essentially capture the width of the ambiguity function in the Doppler and time-delay dimensions
and any coupling between the parameters. Prior to the now common CRLB analysis, earlier
approaches (e.g., [19] as summarized in [20]), approximated the variances of joint delay and Doppler
estimators formed using matched filters. Although both of these approaches handle the problem of
simultaneous estimation of time delay and Doppler, they are commonly restricted to narrowband
waveforms, for which the Doppler parameter is a frequency shift. CRLB formulations accounting
for the Doppler scale required for broadband waveforms are relatively rare (e.g., [7, 21, 22], [3, Ch.
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4] or [1, Sect. 8.5]). This report presents the broadband formulations.

The CRLB for M multiple independent and identically distributed measurements is simply
that for one measurement divided by M . When an active sensing system projects multiple pulses,
however, the echoes from the different pulses are not necessarily identical. In particular, the time
delay between the echoes of pulses projected at different times is altered by the time-compression or
dilation for OOIs having non-zero radial velocity. This implies that the radial velocity of the OOI
is encoded in both the Doppler scale and the time delays between echoes. Although the frequency-
domain representation of a Doppler shift in the narrowband approximation can obscure this, it is
overt in the Doppler scale formulation and must be accounted for in the analysis. A number of
CRLB analyses exist for multiple pulses (e.g., [15, 22, 23]). However, they are usually restricted
to the narrowband case and often consider specific waveforms with no coupling between delay
and Doppler. The multiple-pulse CRLBs derived in this report account for the effect of Doppler
on the delays between echoes within the context of a broadband analysis that permits delay-
Doppler coupling. They are also formulated using the characteristic time-frequency parameters of
the individual pulses, which enables a straightforward analysis of arbitrary combinations of the
basic sonar pulses.

2 Single-pulse modeling of radial-velocity and time-delay
estimation performance

A review of performance bounds for estimating radial velocity and time delay from a single
pulse observed in a monostatic active sonar system is presented in this section. The mathematical
model of the echo and its relationship to Doppler scale are presented in Sect. 2.1. Statistical models
for the signal and noise are described in Sect. 2.2, along with the corresponding Fisher information
matrix (FIM), from which Cramér-Rao lower bounds can be constructed. The elements of the FIM
depend on a suite of parameters describing the time-frequency characteristics of the sonar pulse.
The definitions of these parameters for frequency-modulated pulses, including specific results for
the basic sonar pulses (CW, LFM, & HFM) and the more general power-law FM (PLFM) pulse,
are found in Sect. 2.3. Bounds on the variance of unbiased estimators of the parameters are
then presented in Sect. 2.4 and discussed for the basic sonar pulses when one parameter is known
(Sect. 2.4.1) and when both are unknown (Sect. 2.4.2). An adaptation of the results to account for
one-way or bistatic propagation is presented in Sect. 2.4.3 and the impact of estimating angle of
arrival is assessed in Sect. 2.4.4.

2.1 Estimating radial velocity through Doppler

In active sensing systems, the relative radial velocity between a sonar platform and an OOI
is straightforward to estimate from a single echo by exploiting the Doppler effect or through the
arrival times of multiple echoes when at least two pulses are projected at different times. In this
section, the focus is on exploiting the Doppler effect using a single pulse in a monostatic sonar
system. In a basic ocean model,3 the analytic form4 of the measured data can be represented by

x̊(t) = Aejψ s̊(η[t− τ ]) + v̊(t) [units: µPa], (1)

3The basic ocean model assumes the propagation environment is boundaryless, homogeneous, lossless, and disper-
sionless [1, pg. 96].

4The analytic form of a signal [1, Sect. 7.3.1] strips away the negative-frequency spectral components to produce
a complex-valued representation that is often easier to use in mathematical analysis.
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where s̊(t) and v̊(t) are, respectively, the analytic forms of the projected pulse and the measured
background noise, τ [units: s] is the two-way propagation delay, η [unitless] is the Doppler scale,
A is the amplitude of the echo in field-quantity units (e.g., pressure or a quantity proportional to
pressure), and ψ [units: rad] is the bulk phase. Estimates of the primary two unknown parameters
(τ and η) are obtained by maximizing the squared modulus of a matched filter [1, Sect. 8.2.8.2]. The
estimators are typically implemented in concert with a detector in a Doppler filter bank [1, Sect.
8.7.1], which consists of a suite of matched filters running in parallel with replicas tuned to span
the Doppler scales expected to be observed. The Doppler channel in which the maximum response
occurs and its time provide coarse estimates of η and τ that can be refined either with a local search
or from a parametric fitting to a function approximating the ambiguity function near its peak.

The Doppler scale [1, Sect. 2.2.5] arises from an assumption of constant relative radial velocity
in the active-sonar sensing problem (e.g., see [24, Sect. 11.2] or [1, Sect. 3.2.3.3] for its derivation by
solving the inhomogenous wave equation for a moving source). For narrowband waveforms in a two-
way monostatic geometry, the Doppler scale simplifies to a Doppler shift of δf ≈ (η−1)fc ≈ 2vfc/cw
[units: Hz] where fc [units: Hz] is the center frequency, cw [units: m/s] is the speed of sound in
water, and v [units: m/s] is the relative radial velocity.

Although the echo is characterized in terms of its time delay and Doppler, they are often
converted to, respectively, range and relative radial velocity,

r =
cwτ

2
[units: m] and v =

cw(η − 1)

2
[units: m/s]. (2)

The equation for radial velocity is obtained from an approximation to the monostatic Doppler scale
found in [1, pg. 53, eq. 2.31],

η =
(cw − vo)(cw + va)

(cw + vo)(cw − va)
≈ 1 +

2v

cw
, (3)

where v = va − vo with vo the radial velocity of the OOI and va the radial velocity of the active
sonar platform. The relative radial velocity is assumed to be constant (i.e., there is no acceleration
component). The approximation in (3) is accurate when the speeds of the sonar platform and
OOI are much less than the speed of sound, which is generally the case in underwater acoustical
sensing. With the sonar platform at the origin and the OOI at a range r in the positive direction
of the radial axis, v > 0m/s implies the range between the two objects is decreasing (i.e., they are
“closing”). Similarly, they are “opening” when v < 0m/s. Although the opposite definition is also
common, it requires a change to (3) because the time scale η > 1 for closing objects and η < 1 for
opening ones. In this report, the relative radial velocity (v) will generally be referred to as a radial
velocity, assuming the sonar platform is stationary.

The approach taken in this report to assess estimation performance is to obtain bounds on the
variance of estimators for time delay and Doppler scale. The results presented here follow those
found in [1, Sect. 8.5]. Owing to the linear relationships seen in (2), the variances (or bounds)
of range and radial-velocity estimators can be obtained by multiplying those for time delay and
Doppler scale by (cw/2)

2 (e.g., Var{v̂} = Var{η̂} (cw/2)2, where the notation v̂ represents an
estimate of v, unless noted otherwise). The results presented for specific examples will generally
be for time delay (τ) and radial velocity (v) owing to their ubiquitousness in the field.
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2.2 Statistical modeling and analysis assumptions

In a sonar system, the estimation of radial velocity from a single sonar pulse is typically done
after an echo is detected by identifying the value of v (or η) for which the matched-filter intensity is
maximized. When time-delay is unknown, the maximization occurs in both τ and v. These estima-
tors can be derived through the maximum likelihood approach under certain statistical models for
the signal and noise. Analysis of the estimation performance similarly requires assumptions for the
statistical models of the signal and noise. The Gaussian-based models typically used to evaluate
estimation performance are described in Sect. 2.2.1.

In this report, estimation performance is quantified through the Cramér-Rao lower bound
(CRLB), which describes the minimum variance attainable by an unbiased estimator. Although
the CRLB does not indicate what estimator might achieve its limit on performance, maximum-
likelihood estimators are known to achieve the bound asymptotically as the number of observations
increases to infinity [13, Sect. 7.5]. As is the case in many applications, the asymptotic result requir-
ing a large number of observations also applies here to single observations with an asymptotically
large SNR (i.e., a single high-SNR observation can be described as a large number of observations
with lower SNRs). The point at which the CRLB-based analysis fails is when too many “large
errors” occur. A large error occurs when the magnitude of the estimation error is (approximately)
more than half the Rayleigh resolution, which puts it out of the main-lobe of the ambiguity func-
tion. Although these can be accounted for in the analysis (e.g., see [14]), the focus here is strictly
on the CRLB.

The CRLB is formed from the Fisher information matrix (FIM), which represents how much
knowledge about each of the unknown parameters is contained in the measurements and reveals the
connections between parameters. The FIM is a square matrix whose size is equal to the number
of unknown parameters. However, ancillary parameters that are uncoupled from the others can
be ignored because they do not impact estimation of the parameters of interest. The general form
of an FIM entry for complex-Gaussian-distributed data is presented in Sect. 2.2.3 along with its
simplification for estimating parameters in a deterministic-signal model subject to additive Gaussian
noise. The application to estimating time delay and Doppler scale is then presented in Sect. 2.4.

2.2.1 Signal and noise models

When the performance of a parameter estimator is analyzed, it is important to account for all
parts of the estimation process. With the present focus on radial velocity, this implies accounting
for estimation of time delay, which is usually also unknown. For some waveforms (e.g., linear-
and hyperbolic-frequency-modulated ones), errors in time-delay estimation can adversely impact
estimation of Doppler scale. For these waveforms, the two parameters are coupled, which also
impacts how the performance bounds are evaluated. In addition to the time delay, the amplitude
and bulk phase of the echo and any parameters defining the noise are also generally unknown. In
systems employing a sensor array, the angle of arrival of the echo must also be estimated. As seen
in Sect. 2.4.4, the angle of arrival can be completely decoupled from the other parameters when
the OOI is in the far-field of the sensor array by defining the array origin as its geometric center.
However, any parameters that are unknown and coupled with time delay or Doppler scale must be
accounted for in the analysis. This process starts by defining statistical models for the signal and
noise.

The noise is typically assumed to be a bandpass Gaussian random process with a constant
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power spectral density within the frequency band of the projected pulse. The statistical model of
the signal depends on the assumptions made for the amplitude (A) and bulk phase (ψ) of the echo.
As described in [1, Sect. 7.5], propagation conditions play an important role in this choice. For
example, extensive unresolved multipath can lead to a Gaussian-fluctuating signal where A follows
a Rayleigh distribution and ψ is uniformly random on [0, 2π). More benign propagation allows the
amplitude to be considered deterministic, where repeated observations produce the same result. The
bulk phase of the signal in these situations might be taken as deterministic or uniformly random.
Spanning these two extremes is the Rician signal, which has deterministic and Gaussian-random
components. In the application considered here, where echoes from multiple pulses are combined
to estimate radial velocity, it is appropriate for the echo to be deterministic with unknown, non-
random amplitude and phase. Performance bounds for the scenarios of constant and varying bulk
phase across multiple echoes are presented in, respectively, Sects. 4.2 and 4.3.

In order to derive performance bounds, statistical models of the signal and noise need to be
defined explicitly for the measured data. This is most easily done by demodulating the analytic
form of the measurement in (1) to form the complex-envelope,

x̃(t) = e−j2πfctx̊(t) = ũ(t) + ṽ(t), (4)

where ũ(t) and ṽ(t) represent the signal and noise components, respectively, and fc [units: Hz]
is the center frequency of the signal. This process converts bandpass Gaussian noise to be low-
pass, complex, zero-mean Gaussian noise. The signal component is obtained by demodulating the
Doppler-scaled and time-delayed analytic signal (i.e., s̊(η[t− τ ])) from the center frequency of the
original pulse to yield the complex envelope

ũ(t) = Aejψ s̊(η[t− τ ]) e−j2πfct. (5)

Note that this differs from the derivation in [1, Sect. 8.5] in that it does not include the delay
in the demodulation.5 The next step is to sample the complex envelope x̃(t) to form a vector x
spanning the time over which the echo is observed, which generally has an extent equal to the pulse
duration, Tp [units: s]. If the signal bandwidth is W [units: Hz], sampling every 1/W [units: s]
produces noise samples that are uncorrelated,6 which simplifies evaluation of the Fisher information
matrix.

A key parameter in modeling estimation performance is the signal-to-noise power ratio (SNR).
Following the modeling approach found in [1, Sect. 8.2], the sampled analytic-signal (i.e., just the
samples of s̊(t)) is assumed to be scaled to have unit energy; that is, the vector comprising the
samples has unit length.7 The SNR after coherent detection processing is then Sd = A2/λ [unitless],
where λ [units: µPa2] is the variance of ṽ(t). It is possible to relate A2 and λ to parameters such
as the energy of the measured signal and the noise power spectral density (e.g., see [1, Sects. 8.2 &

5The effect of this is that the frequency averages used in the Fisher information matrix come from the analytic
signal rather than the complex envelope. It does not alter the single-pulse bounds; however, it simplifies the analysis
presented in Sect. 4 for multiple pulses that might have different center frequencies.

6After limiting the spectrally flat noise to the frequency band of the signal, the autocorrelation function of its
complex envelope is proportional to sinc(τW ), which is zero when τ is a non-zero-integer multiple of 1/W .

7Specifically, if the signal is defined to exist over the interval t ∈ [−Tp/2, Tp/2], this implies

TpW∑
n=1

∣∣∣∣̊s(−Tp

2
+

n− 1

W

)∣∣∣∣2 = 1 ≈ W

∫ Tp/2

−Tp/2

|̊s(t)|2 dt, (6)

where the approximation comes from the Riemann-sum definition of an integral and dt ≈ 1/W .
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8.2.1]). However, this is often complicated by scale choices in the signal processing that affect the
absolute levels of the signal and noise, but not their power-quantity ratio (i.e., Sd). The relationship
between Sd and the terms of the sonar equation found in Sect. 2.2.2 is therefore more relevant in
the broader context of waveform design in the presence of ambient noise and reverberation.

The choice of a deterministic-signal model allows analysis of the multiple-pulse case with explicit
control over the bulk-phase in the echo from each pulse. However, it requires including the bulk
phase as an unknown parameter, which follows the analysis presented in [17, Ch. 5] for narrowband
waveforms or [1, Sect. 8.5] for broadband ones. This differs from the CRLB derivations found
in [18, Sect. 10.2.1], which are based on the Gaussian-fluctuating signal. The Gaussian-fluctuating
signal model does not require including the bulk phase of the signal as a parameter because it is
treated as uniformly random. However, the derivation of its FIM is more complicated because the
signal enters through the covariance matrix of x rather than its mean. The Gaussian-fluctuating
signal also presents difficulties in multiple-pulse scenarios when the complex amplitude is expected
to be the same for each, but still random (e.g., see [25]). For single-pulse analysis, however, the
two signal models tend to the same result as SNR increases: the CRLB for a Gaussian-fluctuating
signal is proportional to (1+Sd)/[Sd]2, whereas it is proportional to 1/Sd for a deterministic signal.

2.2.2 Relating the SNR after coherent detection processing to terms in the sonar
equation

The signal-to-noise power ratio (SNR) can be determined at different points in the signal pro-
cessing chain and using different definitions [1, Sect. 2.3], so it is important to define it explicitly.
In this report, the SNR used in evaluating estimation performance is defined as the unitless ratio
(Sd) of the signal power to the noise power after coherent detection processing, which here entails
matched filtering. Using a basic active-sonar equation, it can be defined as

Sd =
UoGtG

aTpW

Lp,aLp,b(N0W +R0Tp)
, [unitless] (7)

where the linear-quantity terms from the sonar equation include the

• source factor, Uo [units: µPa2m2],
• propagation loss factor from the sonar projector to the OOI, Lp,a [units: m2],
• target gain, Gt [units: m

2],
• propagation loss factor from the OOI to the sonar sensor array, Lp,b [units: m2],
• (one-sided) noise power spectral density, N0 [units: µPa2/Hz],
• pulse bandwidth, W [units: Hz],
• reverberation pulsing rate, R0 [units: µPa2/s],
• pulse duration, Tp [units: s], and
• array gain, Ga [unitless].

It is clear from the units that this form of the sonar equation is based on mean square pressure
(MSP) rather than energy. The typical restrictions to the coherent processing band and assumptions
of constant spectral densities apply. The relationships to the more familiar logarithmic-quantity
terms are straightforward for the

• source level, SL = 10 log10 Uo [units: dB re µPa2m2],
• propagation loss, PLa = 10 log10 Lp,a [units: dB re m2],
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• target strength, TS = 10 log10Gt [units: dB re m2], and
• array gain, AG = 10 log10G

a [units: dB].

When noise and reverberation level are defined as their total MSP in the coherent processing band
at a hydrophone, as is done in [1, Sect. 2.3], then the

• noise level is NL = 10 log10(N0W ) [units: dB re µPa2] and the
• reverberation level is RL = 10 log10(R0Tp) [units: dB re µPa2].

The form of (7) clearly illustrates that in noise-limited scenarios SNR increases in proportion to
Uo and Tp and that it is precisely E/N0 where E [units: µPa2s] is the energy in the echo. In
reverberation-limited conditions Sd is proportional to bandwidth, as expected, and not dependent
on Uo (for simple models in which Uo/R0 is approximately constant).

2.2.3 Fisher information matrix (FIM) for complex-Gaussian-distributed data

The most common approach for assessing the performance potential in an estimation problem is
to evaluate the Cramér-Rao lower bound (CRLB), which defines the minimum variance attainable
by an unbiased estimator. More details on the CRLB can be found in [13, Ch. 3] & [1, Sect. 6.3.3].
The first step in obtaining the CRLB for a parameter is to evaluate the Fisher information matrix
(FIM) for all unknown parameters in the estimation problem. The CRLB for a single parameter is
then the corresponding diagonal element of the inverse of the FIM.

Suppose the unknown parameters are placed in the vector θ and let the measured data (x)
be complex-Gaussian distributed with mean µ(θ) and covariance matrix Σ(θ). This allows the
parameters to enter either the mean or covariance matrix of the measured data. From [1, eq. 6.75]
or [13, App. 15C], the (i, j) element of the Fisher information matrix is then

FIMθi,θj = 2Real

{
∂µH(θ)

∂θi
Σ−1(θ)

∂µ(θ)

∂θj

}
+ trace

{
Σ−1(θ)

∂Σ(θ)

∂θi
Σ−1(θ)

∂Σ(θ)

∂θj

}
. (8)

The deterministic-signal model described in Sect. 2.2.1 implies the parameters only enter the
distribution of the data through the mean, where the elements of µ(θ) are samples of ũ(t) from (5).
Because the covariance matrix Σ does not depend on θ, the latter term in (8) is zero. Sampling the
complex envelope data at the signal bandwidth implies the covariance matrix is proportional to an
identity matrix, Σ(θ) = λI, where λ is the noise power. As seen in [1, eq. 8.256], the (i, j) element
of the Fisher information matrix for this scenario can then be approximated by the integral

FIMθi,θj ≈
2W

λ
Real


∞∫

−∞

∂ũ∗(t)

∂θi

∂ũ(t)

∂θj
dt

 . (9)

This result is straightforward to obtain by noting that dt ≈ 1/W and using the Riemann-sum
approximation to an integral. Although the technique used to obtain the result in (9) entailed
sampling of the data in such a way as to simplify the statistical analysis (in particular keeping the
noise uncorrelated), oversampling the data does not change the result if the noise continues to have
a flat spectral density outside of the signal band. This suggests the integral approximation may be
less accurate for low time-bandwidth-product waveforms in a reverberation-limited background.
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2.3 Characteristic time-frequency parameters of frequency-modulated (FM)
waveforms

For frequency-modulated waveforms, the FIM entries formed using (9) are conveniently de-
scribed using a set of parameters distilling the time-frequency characteristics of the projected
pulse. These simple characterizations are also exploited in Sect. 4 to describe the results when
using multiple pulses to estimate radial velocity or time delay. The terms that follow, which were
based on the broadband analysis in [21], can be found in various subsections of [1, Sect. 8.5]; they
are collated here for convenience. Although the frequency characteristics (f̄ and σ2f ) are the same
as those found in [17, Ch. 5] or [18, Sect. 10.2.1], the broadband derivation requires defining time
in units of periods (i.e., tf(t)) rather than seconds, which affects the definitions for ρ, c̄, and σ2c
(the latter two replace t̄ and σ2t in the narrowband case, for which c̄ = t̄fc and σ

2
c = σ2t f

2
c ).

As described in [1, Sect. 8.5.3.1], the following forms were derived for frequency-modulated
pulses having the form

s̊(t) = a(t)ejϕ(t) (10)

where the amplitude a(t) [unitless]8 is assumed to vary slowly over time and the phase ϕ(t)
[units: rad] can be differentiated to obtain the instantaneous frequency: f(t) = ϕ′(t)/(2π) [units: Hz].
The average and power of the instantaneous frequency of the signal are

f̄ =

∞∫
−∞

f(t)|̊s(t)|2 dt

∞∫
−∞

|̊s(t)|2 dt

[units: Hz] and Pf =

∞∫
−∞

f2(t)|̊s(t)|2 dt

∞∫
−∞

|̊s(t)|2 dt

[units: Hz2], (11)

respectively, from [1, eq. 8.284] and using [1, eq. 8.280]. The average and power of the time (in
units of periods) are

c̄ =

∞∫
−∞

tf(t)|̊s(t)|2 dt

∞∫
−∞

|̊s(t)|2 dt

[unitless] and Pc =

∞∫
−∞

[tf(t)]2 |̊s(t)|2 dt

∞∫
−∞

|̊s(t)|2 dt

[unitless], (12)

respectively, from [1, eq. 8.296] and using [1, eq. 8.299]. The coupling between the instantaneous
frequency and time (in units of periods) of the waveform is captured by the correlation parameter

r̄ =

∞∫
−∞

tf2(t)|̊s(t)|2 dt

∞∫
−∞

|̊s(t)|2 dt

[units: Hz]. (13)

The above parameters are then used to form the variance of the instantaneous frequency,

σ2f = Pf − f̄2 [units: Hz2], (14)

8The scaling described in (6) implies a(t) is unitless.
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the variance of the time (in units of periods),

σ2c = Pc − c̄2 [unitless], (15)

and the correlation coefficient between the parameters,

ρ =
r̄ − c̄f̄

σcσf
[unitless]. (16)

From (10) it can be seen that |̊s(t)|2 = a2(t). For a constant-envelope pulse, this simplifies the
integrands in the above equations to only the t and/or f(t) components, limits the integral to the
temporal support of the pulse (e.g., t ∈ [−Tp/2, Tp/2]), and forms an average by introducing a Tp
in the denominator. For example, a constant-envelope waveform results in

f̄ =
1

Tp

∫ Tp/2

−Tp/2
f(t) dt [units: Hz] (17)

for the average frequency. Although it is feasible to derive the results for some of the common
amplitude shadings, it is also straightforward to evaluate shaded waveforms through numerical
integrals. In these scenarios, including the derivative of the amplitude (as is done in [3, pg. 188])
can provide a more accurate bound. However, these may not be of practical utility when the
derivative-based components dominate the result as it implies the amplitude shading provides the
key information required for parameter estimation (e.g., using the onset time of a signal before
matched filtering to estimate time delay).

When deriving the characteristic time-frequency parameters from the broadband formulations,
the time origin of the pulse plays a subtle role. The time delay being estimated is that corresponding
to when the part of the pulse at its temporal origin reflects off the OOI. For example, if the time
origin is the beginning of the pulse, the time delay (and corresponding range estimate) represent
when the pulse first encounters the OOI. In Sect. 3.1, where multiple pulses are first considered,
this time is described as the onset of a (hypothetical) reference pulse.

For waveforms with time-varying frequency content, the results for c̄, σ2c , and ρ depend on the
time origin. In this report, the time origin has been defined as the center of the pulse so its temporal
support is on [−Tp/2, Tp/2]. Note that the results in [1, Sect. 8.5] utilize the beginning of the pulse.
As seen in the following sections, using the center of the pulse results in similar forms for up- and
down-sweeping pulses (other than a difference in sign) and identical bounds. Placing the time origin
at the beginning of the pulse results in different performance bounds on time-delay estimation for
up- and down-sweeping LFM and HFM pulses. Equations for the characteristic time-frequency
parameters when the time origin is shifted from the center of the pulse are presented in Sect. 4.4.

2.3.1 Basic waveform types (CW, LFM, & HFM)

The primary sensing waveforms in active sonar systems are the continuous-wave (CW) pulse, the
linear-frequency-modulated (LFM) pulse, and the hyperbolic-frequency-modulated (HFM) pulse.
These can be characterized as special cases of the power-law-frequency-modulated (PLFM) pulses
described in [7]. The instantaneous frequency of a PLFM pulse is

f(t) = f0

[
1 + a

(
t+

Tp
2

)]p
[units: Hz] for t ∈

[
−Tp

2
,
Tp
2

]
(18)
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where

a =
1

Tp

[(
f1
f0

)1/p

− 1

]
[units: 1/s]. (19)

The pulse starts at frequency f0 when t = −Tp/2 and ends at frequency f1 when t = Tp/2 with
the power-law p characterizing the trajectory. An LFM pulse is obtained by setting p = 1, which
is seen to produce a linear progression in the instantaneous frequency and a quadratic progression
in the phase. An HFM pulse arises when p = −1, leading to an instantaneous frequency in the
form of a rectangular hyperbola. A CW pulse can be produced by collapsing the bandwidth (i.e.,
forcing f0 and f1 to tend to fc) while letting p → 0. Up-sweeping pulses have f0 < f1, whereas
down-sweeping pulses require f1 < f0.

The characteristic time-frequency parameters of the PLFMwaveform are presented in Sect. 2.3.2.
The results for the basic sonar waveforms (CW, LFM, & HFM), which can be derived from the
PLFM results, are presented in Table 1. The LFM results for the frequency average and variation (f̄
and σ2f ) can be found in [1, Sect. 8.5.3.1]; however, the results related to the time-in-units-of-periods

(c̄, σ2c , and ρ) differ from those in [1, Sect. 8.5.5.1] owing to the different time origin. To cover
up- and down-sweeping LFM and HFM pulses, the pulse bandwidth is defined as W = |f1 − f0|
[units: Hz]. For the LFM, the ratio of the bandwidth to center frequency from [1, Sect. 8.5.5.1] is
ζ =W/fc [unitless].

2.3.2 The power-law frequency-modulated (PLFM) waveform

The time-frequency parameters used in the FIM to characterize the PLFM waveform are ob-
tained by using the instantaneous frequency from (18) in (11)–(13). Before presenting the results,
it is convenient to define the parameter

γ =

(
f1
f0

)1/p

= 1 + aTp [unitless]. (20)

The characteristic time-frequency parameters of the PLFM waveform are then

f̄ =
γf1 − f0

(p+ 1)(γ − 1)
[units: Hz], (21)

Pf =
γf21 − f20

(2p+ 1)(γ − 1)
[units: Hz2], (22)

c̄ =
Tpf1

2(p+ 1)(γ − 1)

[
γ +

f0
f1

− 2(γ2 − f0/f1)

(p+ 2)(γ − 1)

]
[unitless], (23)

Pc =
T 2
p f

2
1

4(2p+ 1)(γ − 1)

{
γ − f20

f21
− 2

(p+ 1)(γ − 1)

[
γ2 +

f20
f21

−
2
(
γ3 − f20 /f

2
1

)
(2p+ 3)(γ − 1)

]}
[unitless], and

(24)

r̄ =
Tpf

2
1

2(2p+ 1)(γ − 1)

[
γ +

f20
f21

−
[
γ2 − f20 /f

2
1

]
(p+ 1)(γ − 1)

]
[units: Hz]. (25)

These equations clearly exclude the p = −1 case where there is a (p + 1) in the denominator and
the p = −1/2 case when there is a (2p+ 1) in the denominator. One approach to obtaining them
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Table 1: Characteristic time-frequency parameters used in the CRLB for the standard sonar
pulses (CW, LFM, & HFM). All pulses have center frequency fc [units: Hz] and duration Tp
[units: s]. The LFM and HFM pulses start at frequency f0 [units: Hz], end at frequency f1
[units: Hz], and have bandwidth W = |f1− f0| [units: Hz]. Up- and down-sweeping frequency
trajectories in the LFM and HFM pulses are indicated by the upper and lower signs in the ‘±’
and ‘∓’ symbols, respectively. Note that these results are obtained using the approximations
for frequency-modulated constant-envelope pulses as described in [1, Sect. 8.5] but use a time
origin at the center of the pulse rather than the beginning.

Parameter CW pulse LFM pulse HFM pulse

f(t) for t ∈
[
−Tp
2
,
Tp
2

]
fc fc ±

tW

Tp

f0f1Tp
fcTp ∓Wt

f̄ fc
f0 + f1

2
= fc

f0f1 log(f1/f0)

f1 − f0

σ2f 0
W 2

12
f0f1 − f̄2

(
≈ W 2

12
if W ≪ fc

)
c̄

Tpfc
2

±TpW
12

Tpf̄

2

[
f1 + f0
f1 − f0

− 2

log(f1/f0)

]
σ2c

T 2
p f

2
c

12

T 2
p f

2
c

12

(
1 +

ζ2

15

)
T 2
p f

2
c

12

(
σ2f

W 2/12

)
ρ 0

±1√
1 + ζ2/15

± 1 = sign{f1 − f0}

Notes: ζ =
W

fc
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is to apply L’Hôpital’s rule, noting that ∂γ/∂p = −γ log(f1/f0)/p2. The results for an HFM pulse
(p = −1) can also be found in Table 1.

When p→ 0 without a corresponding reduction in the bandwidth, the PLFM pulse is essentially
a CW pulse at one edge of the frequency band with an infinitesimally small amount of time spent
at the other. Taking the limit of p → 0 from above (i.e., p ↘ 0) with f1 > f0, it can be seen that
γ → ∞. This results in f̄ → f1, σ

2
f → p2f21 → 0, σ2c → T 2

p f
2
1 /12, and

ρ→ pTpf
2
1

4σcσf
→

√
3

2
, (26)

which is not zero (the CW-pulse result) because of the small amount of time the pulse spends at
f0. If the limit p → 0 is taken from below (p ↗ 0) with f1 > f0, the PLFM similarly simplifies
to a CW pulse at frequency f0 while spending an infinitesimally small amount of time at f1. To
properly obtain a CW pulse at fc from the PLFM framework, the frequency band must also be
collapsed about fc as p→ 0.

2.4 Single-pulse bounds for estimation of time delay (range) and Doppler scale
(radial velocity)

The single-pulse bounds presented here are from [1, Sect. 8.5.5], which utilizes the deterministic
signal model and accounts for the waveform being broadband. The latter requires use of Doppler
scale as a parameter rather than the frequency shift found under the narrowband assumption. The
Cramér-Rao lower bounds on estimation of radial velocity or delay are formed from the Fisher
information matrix (FIM), which has a dimension equal to the number of unknown parameters in
the statistical model of the measurement. As described in [1, pg. 535, Table 8.6], the amplitude and
the noise variance are uncoupled from the other parameters (i.e., any cross terms containing them
are zero) and therefore can be excluded from the analysis. For a deterministic signal in Gaussian
noise, this leaves the time delay (τ), the Doppler scale (η), and the bulk phase (ψ) as the relevant
unknown parameters.

The FIM for joint estimation of delay, Doppler scale, and bulk phase for this scenario is

FIM(τ, η, ψ) = 8π2Sd


Pf −r̄ −f̄/(2π)

−r̄ Pc c̄/(2π)

−f̄/(2π) c̄/(2π) 1/(4π2)

, (27)

where the parameters, which are described in Sect. 2.3, represent time-frequency characteristics of
the waveform. Note that this differs slightly from the FIM found in [1, pg. 559, eq. 8.314] in that
the average frequency of the analytic signal is used rather than that of the complex envelope (see
footnote 5). However, the two-by-two partition of the inverse of the FIM associated with τ and η
is the same as that found in [1, eq. 8.315],

{
FIM−1(τ, η, ψ)

}
τ,η

=

 1
σ2
f

ρ
σcσf

ρ
σcσf

1
σ2
c


8π2Sd(1− ρ2)

. (28)
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As described in [1, Sect. 6.3.3.1], the diagonal terms in (28) provide lower bounds on the variance
of unbiased estimates of the unknown parameters, yielding

Var{τ̂} ≥ 1

8π2Sdσ2f (1− ρ2)
[units: s2] (29)

from [1, eq. 8.316] for the time delay and

Var{η̂} ≥ 1

8π2Sdσ2c (1− ρ2)
[unitless] (30)

from [1, eq. 8.317] for the Doppler scale. The CRLBs on delay and Doppler scale can be converted
to range and radial velocity, respectively, by multiplying (29) and (30) by c2w/4, which is the squared
derivative of the transformed parameter with respect to the original (recall that r = τcw/2 and
v = (η − 1)cw/2). For example, the bound for radial-velocity estimation is

Var{v̂} ≥ c2w
32π2Sdσ2c (1− ρ2)

[units: m2/s2]. (31)

It is interesting to contrast these results to those assuming one of the parameters is known.
When Doppler scale is known, the CRLB for time-delay estimation is 1/(8π2Sdσ2f ) from [1, pg.
549, eq. 8.270]. This is obtained from the FIM in (27) by removing the row and column associated
with η and then taking the diagonal term related to τ in the inverse of the resulting two-by-two
matrix. The result for estimating Doppler scale when time delay is known is similarly 1/(8π2Sdσ2c )
from [1, pg. 555, eq. 8.301] or by following the above procedure with (27) when removing the row
and column associated with τ . It can also be seen that these results are identical to when both
parameters are unknown and there is no coupling between time and frequency in the pulse, which
is represented by the parameter ρ being equal to zero. Noting that ρ ∈ [−1, 1], this result reinforces
the expectation that performance can only degrade when an additional coupled parameter (i.e.,
ρ ̸= 0) is treated as unknown.

The remainder of this section presents the CRLBs on radial-velocity and time-delay estimation
for the basic sonar pulses (CW, LFM, & HFM) when one parameter is known (Sect. 2.4.1) and when
both parameters are unknown (Sect. 2.4.2). The depictions of the waveform ambiguity functions
found in Fig. 1 can be useful in discerning where each waveform excels or struggles. These cartoons
illustrate the general shape of the ambiguity function; see [1, Sect. 8.3] for specific examples.
Ambiguity functions have a peak at the origin, where the signal echo and matched-filter replica
are identical. The decay from the origin generally occurs with sidelobes (i.e., not monotonically),
which can be nearly as high as the peak in some waveforms. As seen in Fig. 1, the decay is not
necessarily identical in every direction. Here the ambiguity functions provide insight into how
performance changes when the Doppler and time-delay parameters are both unknown compared
to when one is known. If one parameter is known, the performance is driven by the decay of
the ambiguity function in the dimension of the unknown parameter. When both parameters are
unknown, estimation performance for the FM waveforms is driven by the slow decay along the
slanted ridge of the ambiguity function for both time delay and Doppler owing to the coupling.
However, for the CW pulse it can be seen that errors in time-delay estimation do not degrade
performance for radial-velocity estimation and vice versa.
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2.4.1 Basic sonar pulses when one parameter is known

The CRLB for estimating radial velocity or time delay using a single pulse is presented here
when the alternative parameter is known. For example, the relative radial velocity of an OOI is
known to be zero if it and the sensing platform are stationary and the time delay must be estimated
if the OOI is at an unknown range. Although examples of radial-velocity estimation when time
delay is known are rare, the results found here can still be useful when the time and frequency
dimensions are uncoupled or as lower bounds on performance when both parameters are unknown,
noting that they might not be particularly tight. The bounds obtained when both parameters are
unknown are presented in Sect. 2.4.2.

The relevant characteristic time-frequency parameters (σ2c and σ
2
f ) for the basic sonar pulses are

obtained from Table 1 (pg. 16). The underlying parameters required to define the time-frequency
parameters and the CRLBs for these waveforms are

• the pulse duration, Tp [units: s],
• the pulse bandwidth, W [units: Hz],
• the center frequency of the pulse, fc [units: Hz],
• the speed of sound, cw [units: m/s], and
• the SNR after coherent detection processing, Sd [unitless].

A specific definition for the SNR after coherent detection processing using terms from the sonar
equation was presented in Sect. 2.2.2.

CW Pulses: For the CW pulse, there is no time-frequency coupling (i.e., ρ = 0), which implies
the bounds are the same when one or both of the parameters (time delay and radial velocity) are
unknown. As seen in Fig. 1, the ambiguity function of a long-duration CW pulse is narrow in the
Doppler dimension and broad in time delay. This implies that it is useful for estimating radial
velocity but may not excel at time-delay estimation unless it is short in duration, in which case it
is a poor estimator of velocity. Using σ2c = f2c T

2
p /12 from Table 1 (pg. 16) for the CW pulse, the

CRLB on radial-velocity estimation is seen to be

Var{v̂} ≥ 3c2w
8π2SdT 2

p f
2
c

[units: m2/s2]. (32)

Recall that this is obtained by multiplying the bound for Doppler scale by c2w/4 to account for the
transformation. As expected, this result illustrates how increasing SNR, pulse duration, or center
frequency improves estimation of radial velocity. In some applications, this can be driven below
the Doppler spreading induced by random motion of the ocean boundaries, sonar platform or OOI.

The CRLB shown in (32) can be placed into perspective by describing it in terms of the Rayleigh
resolution [1, Sect. 8.5.1], which is the distance from the peak to the first zero in the average response
function. For a CW pulse, this is easily understood to be a Doppler shift in frequency equal to
1/Tp [units: Hz], which maps to a radial velocity of

vRay =
cw

2fcTp
[units: m/s] (33)
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for two-way monostatic sensing. Using this in (32) and taking the square root to describe a bound
on the standard deviation of the estimator results in

Std{v̂} ≥
vRay

2.56
√
Sd

[units: m/s]. (34)

Similar to the time-delay-estimation example in [1, Sect. 8.5.1.2], this illustrates how the CRLB
characterizes accuracy in the estimation (of unbiased estimators) as opposed to the resolution,
which is a more rudimentary measure. A high SNR enables estimation accuracy significantly below
the Rayleigh resolution.

For the CW pulse, the “frequency-variation” parameter is zero (σ2f = 0Hz2) when it is con-
structed from the instantaneous frequency, which implies the CRLB for time-delay estimation (e.g.,
(29) with ρ = 0) is infinite. This does not imply that time delay cannot be estimated from CW-
pulse echoes, only that the regularity conditions required by the CRLB are not satisfied and so it
does not apply. Modifying the pulse through amplitude modulation (e.g., tapering the pulse at its
beginning and end, for which the characteristic time-frequency parameters can be found in [3, Sect.
4.4.1]) or restricting the frequency content (e.g., see the example in [1, Sect. 8.5.3.2]) can yield
values of σ2f > 0Hz2 that capture some of the pertinent relationships (e.g., proportionality to the

squared pulse duration and inverse dependence on SNR; i.e., the CRLB is ∝ T 2
p /S

d). However,
they may not be particularly tight lower bounds.9

Evaluation of other bounds (e.g., Barankin bounds in [26] or Ziv-Zakai bounds in [27]) exhibits
a similar dependence on pulse duration, but yields an inverse dependence on the squared SNR. For
example, the Ziv-Zakai bound is

Var{τ̂} ≥ 1.62

[
Tp
Sd

]2
[units: s2] for Sd > 6.48 ≈ 8.1 dB, (35)

from [27, pg. 389]. This proportionality to [Tp/S
d]2 is also seen in the approximations of [19, App.

I] where the probability density function of the time-delay estimation error was approximated
as following a double-exponential or Laplace distribution with a variance equal to 0.5[Tp/S

d]2

[units: s2]. This illustrates an important impact of scenarios for which the CRLB does not exist: the
asymptotic distribution of the estimator is not necessarily Gaussian (see some additional discussion
of this topic in Sect. 2.4.2 under HFM pulses).

In noise-limited scenarios, Sd is proportional to Tp and the source factor10 for a constant-
envelope pulse. This implies that effective time-delay estimation from CW pulses requires a high
source level and to a lesser degree short pulses (the inverse dependence on Sd in the Ziv-Zakai
bound [27] was not as strong as squaring when the SNR was below 8.1 dB). When time-delay
estimation is paramount and the source level cannot be made high enough to provide adequate
SNR after matched filtering for the ranges of interest, one typically needs to utilize LFM or HFM
pulses.

9For example, bounds for CW time-delay estimation formed through amplitude shading suggest the information
comes from sharp transitions such as at the beginning and end of the pulse. Estimating time delay from the onset
of an echo, however, does not exploit matched filtering where a high SNR can equate to many observations and
therefore be representative of asymptotic conditions. This suggests that the estimator may be far from efficient; i.e.,
that CRLB is not necessarily tight.

10The source factor is the linear quantity formed from the logarithmic source-level term in the sonar equation; see
Sect. 2.2.2, [28, Sect. 3.2.2] or [1, Sect. 3.2.3.4].
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LFM Pulses: For an LFM pulse, the frequency-variation parameter from Table 1 (pg. 16) is
σ2f =W 2/12 [units: Hz2], which results in the lower bound

Var{τ̂} ≥ 3

2π2SdW 2
[units: s2] (36)

on time-delay estimation when radial velocity is known. Compared to the CW-pulse bound in (35),
bandwidth can be increased to improve estimation performance without altering SNR in noise-
limited scenarios. This makes broadband pulses a popular choice when time-delay estimation is
paramount.

Using the value of σ2c = T 2
p f

2
c (1 + ζ2/15)/12 [unitless] from Table 1 (pg. 16) with ζ =W/fc for

the LFM pulse results in

Var{v̂} ≥ 3c2w
8π2SdT 2

p (f
2
c +W 2/15)

[units: m2/s2] (37)

as the CRLB on radial-velocity estimation when time delay is known. Setting the bandwidth W
to zero causes (37) to simplify to the CW result in (32). Similar to the CW pulse, the bound
here is essentially inversely proportional to Sd(Tpfc)

2, indicating SNR, pulse duration and center
frequency drive performance.

In both of these cases, the assumed knowledge of the alternative parameter implies performance
depends on how the ambiguity function decays from the origin in the dimension of the unknown
parameter. As seen in Fig. 1, this is narrow in both dimensions for the LFM and HFM pulses.
However, the requirement that one parameter be known limits the utility of this result because it
is usually not satisfied.

A case where the bound on time-delay estimation in (36) can be applied when both range and
radial velocity are unknown arises when estimation is performed using time delays over multiple
consecutive pulses. By exploiting the Doppler tolerance of the LFM or HFM waveform, detection
and biased time-delay estimation can be performed using a single matched filter. Mismatch in
Doppler between the echo and the replica results in a small loss in SNR and a bias in the time-
delay estimates. In terms of the ambiguity functions in Fig. 1, the decay in the temporal dimension
at a Doppler corresponding to the mismatch drives the estimation performance. Transmitting the
same pulse multiple times then allows estimating both the radial velocity and an unbiased time
delay. The performance of these estimators is examined in Sect. 3.

HFM Pulses: It can be seen from the equations for σ2f and σ2c in Table 1 (pg. 16) that the
HFM pulse yields approximately the same performance as the LFM when the bandwidth is small
compared to the center frequency. In these scenarios, the result in (36) can be used for estimating
time delay. For estimating radial velocity, it is better to use the approximation σ2f ≈ W 2/12 to

obtain σ2c ≈ T 2
p f

2
c /12, which produces the same bound as that found in (32) for the CW pulse.

With these approximations, the relative absolute errors are less than 10% when ζ ≤ 0.8.

2.4.2 Basic sonar pulses when both radial velocity and time delay are unknown

CRLBs for the joint estimation of radial velocity and time delay are presented in this section
when using a single basic sonar pulse. The relevant characteristic time-frequency parameters (σ2c ,
σ2f and ρ) are obtained from Table 1 (pg. 16).

TR2303 21



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

CW Pulses: As previously noted, the time-delay and radial-velocity parameters are decoupled
(i.e., ρ = 0) for CW pulses. This implies the CRLBs for their joint estimation are the same as
those described in Sect. 2.4.1 when assuming the alternate parameter is known.

LFM Pulses: The ambiguity function for the LFM pulse seen in Fig. 1 illustrates the classic
coupling [29] between time delay and Doppler for which LFM and HFM waveforms are known. It
can also be seen that the LFM pulse is subject to some spreading when the echo and replica are
mismatched in Doppler. Although this can degrade detection performance when there is mismatch
in Doppler, it is indicative of improved joint estimation of time delay and Doppler relative to
the HFM pulse. From [30, eqs. 9 & 10], the “Doppler tolerance” (essentially defined in [30] as
the distance in Doppler from the peak to the 3-dB-down point along the ridge in the ambiguity
function) is

v⋆ = ± 1.74

WTp
· cw
2

≈ ± 2600

WTp
[units: kn] ≈ ± 1300

WTp
[units: m/s], (38)

which shows that useful Doppler sensitivity from the LFM pulse requires a high time-bandwidth
product.

Using the values of σ2f and ρ from Table 1 (pg. 16) for the LFM pulse, the CRLB on time-delay
estimation when radial velocity is also unknown can be shown to result in

Var{τ̂} ≥
[

3

2π2SdW 2

][
1 +

15f2c
W 2

]
[units: s2], (39)

where the first term in brackets is the bound when radial velocity is known from (36). This relation-
ship illustrates the degradation in performance when it is necessary to estimate both parameters—a
multiplicative factor large enough to make relying on a single LFM pulse to obtain an unbiased
estimate of time delay (when radial velocity is unknown) a poor design choice except when the
bandwidth-to-center-frequency ratio is large.

The CRLB for radial-velocity estimation when delay is also unknown can be shown to be

Var{v̂} ≥ 45c2w
8π2SdT 2

pW
2

[units: m2/s2], (40)

which illustrates an inverse dependence on bandwidth. Similar to the construction of the bound in
(39), which was for estimating time delay, (40) can be re-written as

Var{v̂} ≥
[

3c2w
8π2SdT 2

p (f
2
c +W 2/15)

][
1 +

15f2c
W 2

]
[units: m2/s2], (41)

which is the product of the bound from (37) for estimating radial velocity when time delay is known
(the first term in brackets) and 1+15f2c /W

2. As might be expected, the CRLB in (40) has a similar
relationship to the resolution capability of the waveform (e.g., using (38)) and SNR as that seen
for the CW pulse in (34). Compared to the improvement seen in (32) with center frequency for a
CW pulse, the LFM pulse is driven here by bandwidth and starts out with a much larger constant
in the numerator (45 versus 3). A CW pulse with equivalent signal statistics, SNR, duration, and
center frequency will always have a lower CRLB for radial-velocity estimation.
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This significant degradation in estimation performance is explained by the ambiguity function
in Fig. 1 where joint estimation of the parameters is driven by the slow decay along the ridge as
opposed to the rapid decay seen in either dimension when the alternate parameter is known. This
coupling between time delay and radial velocity results in a large magnitude for the time-frequency
correlation parameter,

ρ =
±1√

1 + W 2

15f2c

, (42)

where the upper and lower symbols in ‘±’ indicate, respectively, an up-sweeping or down-sweeping
trajectory of the instantaneous frequency. From (42), it can be seen that ρ has a minimum mag-
nitude of |ρ| >

√
15/19 ≈ 0.89 for the centered time-delay estimator achieved in the limit as the

bandwidth increases to 2fc. At the other extreme, ρ tends to a magnitude of one as the bandwidth
is reduced to zero. In this limit (W → 0Hz and |ρ| → 1), one of the eigenvalues in the Fisher
information matrix in (27) tends to zero, so the matrix becomes singular and is not invertible,
violating the regularity conditions [31, Sect. 17.14] required by the CRLB. A similar problem is
encountered by the HFM pulse, but for all bandwidths.

HFM Pulses: The HFM pulse has been described as “optimally Doppler tolerant” [5,6] because
the Doppler scale induced by constant radial velocity does not alter the shape of the instantaneous
frequency, but only its starting and stopping frequency (e.g., see [1, pg. 463, Fig. 8.4]). The loss
incurred by mismatch in Doppler between an echo and the replica in a matched filter then comes
from a reduction in the effective pulse duration and bandwidth as a result of the reduced overlap.
In the LFM pulse, Doppler mismatch also has the effect of changing the slope of the instantaneous
frequency and therefore incurs an additional mismatch loss with the benefit of better estimation of
radial velocity. Although the optimal Doppler tolerance of the HFM pulse is a boon for detection,
it results in full coupling (ρ = ±1) between time delay and radial velocity at all bandwidths. This
causes the CRLBs in (29) and (30) to be infinite, because the regularity conditions [31, Sect. 17.14]
required for the CRLB to exist are not satisfied. In particular, the derivative of the likelihood
function with respect to η does not exist at its true value. This is most clearly seen when the
characteristic parameters are written in terms of derivatives of the ambiguity function.11 In this
case, the envelope of the HFM ambiguity function in the Doppler-scale dimension decays from the
origin with the form of a triangle function, which is not differentiable at its peak.

Similar to the discussion of estimating time delay with a CW pulse in Sect. 2.4.1, this does
not mean that time delay and radial velocity cannot be jointly estimated from an HFM waveform.
There are, however, implications with respect to how the errors are characterized. First, bounds
on the variance must be obtained using other techniques (e.g., those from Barankin [32] or Ziv
and Zakai [27]). Second, the existence of the CRLB carries with it the knowledge that maximum-
likelihood estimates will tend to Gaussian distributions asymptotically as the number of samples
increases [13, Sect. 7.5] with a variance defined by the CRLB. In the present scenario, the asymptotic
condition can be used as an approximation for very high SNR (i.e., a single observation at a very
high SNR can often be interpreted as many observations of weak signals). Because the CRLBs
exist for the LFM waveform, the time-delay and radial-velocity estimates can be approximated as
jointly Gaussian distributed, as was done in the example in [1, Sect. 8.5.5.1] to form a confidence

11See [18, pg. 300, Property 2] for the narrowband case or [1, pg. 549] for the broadband case for f̄ and σ2
f . The

broadband case for c̄, σ2
c , and ρ can be derived from [1, eq. 8.272].
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ellipse. When the SNR is not high enough for the performance to be represented by the asymptotic
distribution, a multivariate t-distribution with a shape parameter causing it to tend to a multivariate
Gaussian distribution as SNR increases to infinity is an appropriate alternative.

When the CRLB does not exist, it is not clear what the asymptotic distribution might be.
However, an analysis of delay estimation using a CW pulse (for which the ambiguity function falls
off in the form of a triangle function) in [19, App. I] suggests the errors will, to first order, follow a
double-exponential (i.e., Laplace) distribution. Although performance will improve with SNR, the
errors will always be heavier tailed than Gaussian. When the SNR is not asymptotically high, a
double-Weibull distribution designed to tend to a double-exponential distribution with increasing
SNR is a reasonable alternative.

2.4.3 Modifications for one-way and bistatic propagation

In applications where there is only one-way propagation or in a bistatic geometry where the
projector (source) and sensor array (receiver) are not co-located, the results in this report can be
applied after appropriately considering the relationship between the Doppler scale in the measure-
ment and the velocity being estimated.

For one-way propagation, the Doppler scale observed at the receiver is [1, pg. 52, eq. 2.26],

η1-way =
cw − vr
cw − vs

≈ 1 +
v

cw
[unitless], (43)

where, similar to the descriptions in Sect. 2.1, vs is the radial velocity of the source platform, vr is
the radial velocity of the receiver platform, and v = vs − vr is the relative radial velocity. Solving
this for relative radial velocity results in

v = cw(η1-way − 1) [units: m/s]. (44)

Using ∂v/∂η1-way = cw, the CRLBs on the relative radial velocity estimated from a one-way obser-
vation can be obtained by multiplying the bounds on estimating η found elsewhere in this report
by c2w. Compared to the monostatic two-way scenario, which requires multiplication by c2w/4, these
bounds on the variance are four times larger, as might be expected when halving the travel time
of the measurement.

For bistatic sensing geometries, the relationship between Doppler scale and the velocity being
estimated can be obtained from [33, eq. 9],

ηbi =
(cw + Vo cos θos)(cw + Vr cos θro)

(cw − Vs cos θso)(cw − Vo cos θor)
[unitless], (45)

where the capital letters Vs, Vr and Vo [units: m/s] represent platform speeds, and the angle θxy
[units: rad] is between the heading of platform x and the angle pointing to platform y. The first-
order Maclaurin-series approximation to (45) can be described as

ηbi ≈ 1 +
2v̄o
cw

+
Vs cos θso

cw
+
Vr cos θro

cw
[unitless], (46)

where v̄o [units: m/s] is the combined contribution of the OOI in the two different radials pointing
toward the source and receiver. From [33, eq. 12], it is

v̄o = Vo cos(θoβ) cos(β/2) [units: m/s] (47)
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where θoβ = (θos + θor)/2 [units: rad] is the angle from the OOI heading to the bisector between
the angles pointing to the source and receiver, and β = θos − θor [units: rad] is the bistatic angle.

The contributions to (46) from the source and receiver are typically known, which allows es-
timation of v̄o from the Doppler scale in the echo measured at a bistatic receiver. The partial
derivative of v̄o with respect to ηbi is the same as that for the two-way monostatic geometry (i.e.,
cw/2), which implies the bounds on its estimation are the same as those found throughout this
report.

2.4.4 Accounting for estimation of the angle of arrival

Many sonar systems include estimation of the arrival angle of the echo at a sensor array, which
is (in general) the two-dimensional vector θ = [θ ϕ]T containing the azimuthal angle θ [units: rad]
and the elevation angle ϕ [units: rad]. In this section, the CRLB analysis presented in Sect. 2.4
is extended to account for estimating one of the angles (θ) under the assumption that the other
is known. To simplify notation, dependence on ϕ is suppressed. As will be seen, the impact of
simultaneously estimating the two angles can be assessed from these results. This analysis is also
limited to scenarios for which the signal is narrowband with respect to the array processing and
when the noise across the sensor array is independent. The general case of spatially correlated noise
can be found in [15]. To maintain consistency with earlier definitions, let Sd = A2/λ be the SNR
after both beamforming and coherent detection processing, which implies that for a single sensor
the signal amplitude is A/N and the noise variance is λ/N , where N is the array gain (Ga), which
is interpreted here as the size of the array in terms of the number of sensors exhibiting mutually
independent noise. The signal observed on the nth sensor of N is then described by extending (5)
to

ũn(t) =
A
N e

jψ s̊(η[t− τ − αn(θ)]) e
−jωct, (48)

where αn(θ) [units: s] is an additional delay term that depends on the angle at which the echo
impinges on the sensor array. The beamforming operation corrects for these delays and sums over
the N sensors to form (5), where the beam-output noise variance is λ. The pertinent modification
of (5), however, comes from the delay terms describing which part of the echo is observed at each
sensor. For example, the delays for a uniformly spaced linear array (ULA) are

αn(θ) =
(n− n̄)d cos θ

cw
[units: s] (49)

for n = 0,. . . ,N − 1, where d [units: m] is the inter-sensor spacing and the array is placed in the
horizontal plane so θ is also the conical angle of the wavefront impinging on the array (θ = 0 rad
is forward array end-fire). The value of n̄ dictates the origin of the array, which is the location for
which the beamforming operation reconstructs the signal. It is often either one of the sensors (e.g.,
n̄ = 0 for the first sensor) or the geometric center of the array (n̄ = (N − 1)/2).

In the basic analysis presented here, the sensors are assumed to be placed so that the noise
observed on them is independent, as occurs in the ULA when the sensors are spaced every half
wavelength, d = λd/2, where λd = cw/fc [units: m] is the wavelength at the design frequency of
the line array, which here is taken as the center frequency of the signal owing to the narrowband
assumption. This simplifies (49) to

αn(θ) =
(n− n̄) cos θ

2fc
[units: s], (50)
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which now only depends on the angle of arrival and center frequency.

The CRLBs are derived as described in [1, Sect. 8.5.3–8.5.5] by first forming the Fisher infor-
mation matrix (FIM). In addition to the partial derivatives with respect to time delay, Doppler
scale and bulk phase, this requires use of the partial derivative of (48) with respect to θ,

∂ũn(t)

∂θ
= −j ∂αn(θ)

∂θ
2πf(t)ũn(t), (51)

which includes evaluation at the true values of the parameters. Independence of the noise across
the sensors allows forming the FIM simply by summing the single-sensor FIMs. This has the effect
of accruing the terms

an =
∂αn(θ)

∂θ
[units: s/rad], (52)

which represent the sensitivity of the time delays to arrival angle. Similar to the characteristic
time-frequency parameters described in Sect. 2.3, the array delay sensitivities require the average,

ā =
1

N

N−1∑
n=0

∂αn(θ)

∂θ
[units: s/rad] (53)

and the average power,

Pa =
1

N

N−1∑
n=0

[
∂αn(θ)

∂θ

]2
[units: s2/rad2]. (54)

The variance of the sensitivities is σ2a = Pa − ā2 [units: s2/rad2]. When the OOI is in the far-field
of the sensor array, the acoustic waves carrying the echo can be assumed to be planar, for which
the delay affecting the nth sensor is

αn(θ) = u⃗(θ) · (x⃗o − x⃗n)

cw
[units: s], (55)

where u⃗(θ) is a three-dimensional unit vector pointing in azimuth and elevation toward the OOI,
x⃗n is the position of the nth sensor, x⃗o is the array origin, and ‘·’ represents a dot product. By
choosing the array origin as the geometric center of the array,

x⃗o =
1

N

N−1∑
n=0

x⃗n [units: m], (56)

it can be seen that ā in (53) equals zero, which also causes Pa to equal σ2a. For the ULA with an
origin at its geometric center, this results in

σ2a =
(N2 − 1) sin2 θ

48f2c
[units: s2/rad2]. (57)

The FIM for joint estimation of delay, Doppler scale, arrival angle, and bulk phase for this
scenario can be shown to be

FIM(τ, η, θ, ψ) = 8π2Sd


Pf −r̄ āPf −f̄/(2π)

−r̄ Pc −ār̄ c̄/(2π)

āPf −ār̄ PaPf −āf̄/(2π)

−f̄/(2π) c̄/(2π) −āf̄/(2π) 1/(4π2)

. (58)
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Note that removing the third row and third column produces (27), the FIM when θ is known.
When ā is zero, as it is when the OOI is in the far-field and the array origin is at its geometric
center, it is straightforward to see that θ is decoupled from the other parameters. This implies the
results from (29)–(31) apply directly for estimation of delay and Doppler when the arrival angle is
unknown and also must be estimated.

When ā ̸= 0 s/rad, it can be shown12 that the CRLB for estimating the time delay is

Var{τ̂} ≥
1 +

ā2σ2
f (1−ρ

2)

σ2
aPf

8π2Sdσ2f (1− ρ2)
[units: s2]. (59)

Under the narrowband assumptions made earlier (for which σ2f ≪ Pf ), the latter term in the
numerator will be small enough to ignore, in which case the result is essentially the same as (29).
Interestingly, the coupling arising when ā ̸= 0 s/rad has no effect on the CRLBs for Doppler scale,

Var{η̂} ≥ 1

8π2Sdσ2c (1− ρ2)
[unitless], (60)

which is the same as (30), or angle,

Var
{
θ̂
}
≥ 1

8π2Sdσ2aPf
[units: rad2], (61)

which is seen to equal the inverse of the (3, 3) element in (58) when ā = 0 s/rad. The off-diagonal
entries of the inverse FIM provide an idea of how correlated two parameter estimates will be
asymptotically as the number of observations or SNR increases. Even for ā ̸= 0 s/rad, the co-
variance between θ̂ and η̂ is asymptotically zero, implying independence when the estimates are
Gaussian distributed. The correlation coefficient (formed by dividing the covariance by the standard
deviations of the two estimates) between θ̂ and τ̂ has the limit

ρθ,τ →
−ā
√

(1− ρ2)σ2f√
σ2aPf + ā2(1− ρ2)σ2f

. [unitless] (62)

Even when the array origin is not its geometric center, this is likely to be close to zero given
the σ2aPf term in the denominator. Based on these results, the time-delay and Doppler param-
eters can essentially be treated as uncoupled from arrival angle, implying their estimates will be
asymptotically independent.

The above analysis is identical to estimation of the elevation angle ϕ when θ is known—it can
similarly be assumed to decouple from τ and η. When both angles are unknown, they therefore
jointly decouple from the other parameters, but may be coupled themselves (e.g., for a line array
the two angles couple so that only the conical angle can be estimated).

12The results presented in (59)–(63) were derived by partitioning (58) in a manner similar to that described in
App. A.2 (i.e., using (A24)) with a three-by-three matrix in the upper left corner and using (A25)) to describe the
upper-left sub-matrix of the inverse FIM as G. The elements of the inverse FIM are then obtained from G−1, which
is easily characterized from (58), using the corresponding terms of the cofactor and the determinant of the matrix as
described in [34, Sect. 4.4].
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Although it is not a focus of this report, the CRLB for estimating arrival angle with a ULA can
be obtained by using (57) in (61) to produce

Var
{
θ̂
}
≥ 6f2c
π2Sd(N2 − 1) sin2(θ)Pf

≈ 6

π2Sd(N2 − 1) sin2(θ)
[units: rad2]. (63)

Exploitation of the narrowband assumption leads to Pf/f
2
c ≈ 1 and the approximation on the

right. This result can be shown to be identical to that found in [16, eq. 14] or [14, eq. 17] after
transformation to θ and appropriately accounting for the noise variance and SNR.13

3 Time-delay-based multiple-pulse estimation of radial velocity

LFM and HFM waveforms are useful in sonar detection because their bandwidth can improve
performance in reverberation-limited conditions and their insensitivity to Doppler [5, 6] allows the
use of a single matched filter for detection across a large span of radial velocities. The coupling
of their ambiguity functions in the delay and Doppler dimensions, however, hinders estimation
of these parameters when both are unknown by imparting a bias in delay that depends on the
radial velocity. An example of the matched-filter response for an LFM pulse to echoes from OOIs
exhibiting different (relative) radial velocities is shown in Fig. 2. When sensing is performed with
multiple pulses, one approach to resolving this problem is to use the biased time-delay measurements
to jointly estimate the two unknown parameters. The approach is presented and analyzed in this
section.

Throughout the pulse train, the OOI is assumed to have constant (but unknown) radial velocity.
For non-zero radial velocity, the range of the OOI will be different for pulses projected at different
times. This requires choosing a particular reference within the pulse train for which the travel
time (i.e., delay) and corresponding OOI range are being estimated. The time and range related
to this reference are denoted using a ‘⋆’ subscript; e.g., r⋆ is the OOI range being estimated. It
is convenient to interpret these parameters as if they were related to projection of a hypothetical
reference pulse. For example, suppose this reference pulse is projected at time ttx⋆ , arrives at the
OOI at time tooi⋆ when it is at range r⋆, and the echo from the OOI then impinges on the sensor
array at time t⋆. Although one might expect that placing this reference pulse in the middle of the
pulse train can minimize the bounds related to range estimation, this is not the case for waveforms
for which time delay and Doppler are coupled. As will be seen in Sect. 4.4, this intuition only holds
when the dimensions are uncoupled. For time-delay-based estimation, the choice of ttx⋆ is seen in
Sect. 3.4 to affect the CRLB for estimating range and the correlation coefficient between the range
and radial velocity estimates.

Given the large number of time-related terms required to describe the pulses and evaluate
estimation performance, a list of the definitions is presented in Table 2 (pg. 30).

3.1 Geometric modeling for multiple pulses

The time at which the echo from a sonar pulse is observed at a monostatic sonar platform is
typically described in terms of the time at which the pulse was transmitted and the range of the

13E.g., equating phases using (50) with n̄ = 0 at center frequency fc and [14, eq. 3] sampled at t = nT , it
can be seen that 2πfcαn(θ) = πn cos θ = ω0nT . Transforming to θ therefore requires multiplying [14, eq. 17] by
[∂θ/∂ω0]

2 = T 2/[π2 sin2(θ)] and noting that the SNR after processing is Sd = Nb20/(2σ
2), which produces (63).
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Figure 2: Response of a matched filter using a zero-Doppler replica to echoes from OOIs exhibiting
different radial velocities when using an up-sweeping LFM pulse. The delay biases (the black
asterisks) are obtained from (81).

OOI when the pulse reflects off of it. Here, however, it must be presented in terms of the relative
radial velocity (or Doppler scale), the time at which the echo from a reference pulse is observed, and
the delay between projection of the current pulse and the reference pulse. The primary unknown
parameters in this scenario are the range of the OOI when it first interacts with the reference
pulse (or the equivalent time delay) and the relative radial velocity or Doppler scale. Note that
the choice of range or delay and radial velocity or Doppler scale depends on the application—each
option has been employed in this report. This purely geometric modeling assumes a constant speed
of sound, direct-path propagation, and constant relative radial velocity between the sonar platform
and OOI. In contrast to the use of the center of the pulse as a time origin in Sect. 2.3 to define
the characteristic time-frequency parameters, here the time at which the mth pulse is projected
(ttxm) refers to the onset time of the pulse. This is important because it is how such wavetrains are
typically described and it simplifies the analysis when waveforms have different durations.

Consider only the radial dimension between a stationary monostatic sonar platform and an
OOI with radial velocity v (where v > 0m/s when the OOI is closing range). If the sonar platform
is in motion, let the following analysis be in its coordinate system (so it is always at the origin)
and define the radial velocity of the OOI as relative to the sonar platform. Let the hypothetical
reference pulse be projected at time ttx⋆ and suppose it reaches the OOI at range r⋆ > 0m at time

tooi⋆ = ttx⋆ +
r⋆
cw

[units: s], (64)
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Table 2: Definitions of the time-related variables used to describe multiple pulses, all of which have
units of seconds. Relevant equations are referenced where appropriate. Note that the hat notation
in t̂txm, δ̂m, and t̂m refers to the middle of the mth pulse rather than an estimate of an unknown
parameter.

Tm = the duration of the mth pulse

ttxm = the time at which the mth pulse is projected

ttx⋆ = the time at which a hypothetical reference pulse is projected

tooim = the time at which the mth pulse impinges on the OOI (70)

tooi⋆ = the time at which the reference pulse impinges on the OOI and when the OOI is at
range r⋆ (64)

t̂txm = ttxm + Tm/2 = the time at which the center of the mth pulse is projected (114)

δm = ttxm− ttx⋆ = the pulse offset time, which is the time delay between projecting the mth
pulse and the reference pulse (67)

δ̂m = δm + Tm/2 = the time delay between the middle of the mth pulse and the onset of
the reference pulse (115)

∆ = time between pulses when they are projected at regular intervals

t⋆ = the time at which the echo from the reference pulse arrives at the sensor array (65)

tm = the time at which the echo from the mth pulse arrives at the sensor array (74) &
(85)

t̂m = tm + Tm/2 the time at which the echo from the center of the mth pulse arrives at
the sensor array (A1)

τ⋆ = t⋆ − ttx⋆ = 2r⋆/cw = the time delay observed for the hypothetical reference pulse
(111)

τm = tm − ttxm + τbm = the time delay at which the echo from the mth pulse is measured
when accounting for any delay biases (87)

τbm = the delay bias incurred by mismatch in the matched filter (76) & (81) for, respec-
tively, HFM and LFM pulses

bm = τbmcw/(2v) = delay-bias per unit Mach number [units: s], which isolates the effect
of the delay bias to waveform characteristics (82)

dm = bm − δm = the combination of the two delay terms according to how they impact
estimation (91)

t̄tx = the centroid of the pulse train with respect to time-delay estimation (103)
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where cw [units: m/s] is the speed of sound in water. The echo from this pulse is then observed at
the stationary monostatic sonar at time

t⋆ = ttx⋆ +
2r⋆
cw

[units: s]. (65)

The range of the OOI from the sonar platform at time t can be described relative to r⋆ as a function
of time by

rt = r⋆ − v
(
t− tooi⋆

)
[units: m]. (66)

In this formulation, a negative range is interpreted as the OOI being on the other side of the sonar
platform compared to its position at time tooi⋆ .

Suppose that the mth pulse is projected at time

ttxm = ttx⋆ + δm [units: s], (67)

where δm [units: s] is the delay between the mth pulse and the reference pulse. The wavefront
associated with the onset of the mth pulse propagates to range

rt = cw
[
t− (ttx⋆ + δm)

]
[units: m] (68)

for times t ≥ ttx⋆ +δm. The time at which this wavefront meets the OOI can be obtained by equating
(66) and (68) and solving for t, which yields

tooim =
1

cw + v

[
r⋆ + vtooi⋆ + cw

(
ttx⋆ + δm

)]
(69)

= ttx⋆ +
r⋆
cw

+
cwδm
cw + v

[units: s]. (70)

The range at which this occurs,

rm = r⋆ −
cwvδm
cw + v

[units: m] (71)

can be obtained by using (70) in (66) or (68). The time at which the echo from the mth pulse is
observed at the sonar platform is then

tm = tooim +
rm
cw

(72)

= t⋆ +

(
cw − v

cw + v

)
δm (73)

= t⋆ +
δm
η

[units: s] (74)

where η [unitless] is the Doppler scale in a two-way monostatic geometry. This relationship to η is
obtained from (3) by noting v = va − vo and letting va = 0m/s for the stationary sonar platform.
The modifications required to account for how the Doppler scale is related to radial velocity in
one-way and bistatic propagation were covered in Sect. 2.4.3.
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3.2 Modeling the delay measurements after matched filtering

As seen in Fig. 2, the peak response of a matched filter subject to mismatch in Doppler between
the echo and the replica occurs at a time offset from the true delay. The origin of this can be
seen from the shapes of the LFM and HFM ambiguity functions in Fig. 1, which represent the
response of a fixed echo to a Doppler filter bank. The temporal response in the Doppler channel
matched to the echo exhibits no bias in the delay measurement—the peak occurs at the origin.
However, the mismatched Doppler channels exhibit a bias in delay (i.e., the peak is not at the
origin) that depends on radial velocity. From the discussion found on [1, pg. 518], the response
of a single matched filter to an echo with different radial velocities is simply a reflection of the
ambiguity function in the temporal dimension. This implies that for up-sweeping FM pulses and
echoes for which v > 0m/s (closing range), the delay bias in a matched filter using a zero-Doppler
replica will be negative. This can also be discerned from the instantaneous frequency of the pulse
as follows: (i) echoes from closing objects have an instantaneous frequency that is scaled higher
than the zero-Doppler replica; and (ii) for up-sweeping FM pulses, applying a negative delay to the
zero-Doppler replica (i.e., shifting it left) aligns the time-frequency content of the echo and replica
(to the extent possible). Similar arguments explain the sign of the delay bias for down-sweeping
pulses or opening objects.

When a sequence of identical pulses is projected, it is straightforward to estimate the radial
velocity from the biased time-delay measurements. However, the time-delay bias must be accounted
for when using dissimilar pulses or when an unbiased estimate of the OOI range is desired. Using
the narrowband ambiguity function [1, Sect. 8.3.5.2] or converting from the range-based result
of [29], the delay bias for an LFM pulse can be approximated by

τbm ≈ ∓Tpfc
W

· 2v
cw

[units: s], (75)

where the upper and lower signs in the ∓ symbol represent, respectively, up- and down-sweeping
waveforms. The delay bias in (75) is indexed by m to account for wavetrains with dissimilar pulses.
This form illustrates how the pulse duration, center frequency, bandwidth and the radial velocity
affect the delay bias. Although the narrowband approximation in (75) is useful in the performance
analyses considered here, it is generally not accurate enough in practice except for very small radial
speeds.

Before obtaining a more accurate approximation for the LFM pulse, it is helpful to consider
the results presented in [35] for the optimally Doppler tolerant HFM pulse. In [35], the bias was
obtained from the delay that best aligns the instantaneous frequencies of a Doppler scaled echo and
a zero-Doppler replica. Adapting the result in [35, eq. 26] from range to time delay and accounting
for their use of the alternative convention for the sign of relative radial velocity (recall that here
v > 0m/s for closing OOIs) results in

τbm =
∓Tpfc
W

(
1− 1

η

)
[units: s] (76)

≈ ∓Tpfc
W

· 2v
cw

[units: s] (77)

Note that the result in (76) retains the underlying relationship on the Doppler scale η [unitless].
When |v| ≪ cw, the approximation in (77) is seen to be identical to that for the LFM pulse in (75).
As noted above for the LFM pulse, although (77) is accurate enough for the analysis presented
here, the more accurate version in (76) should be used in practice.
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For an HFM pulse, imparting the delay in (76) causes the instantaneous frequencies to align
perfectly over their common frequency band. For LFM pulses, however, matching the instantaneous
frequencies of a Doppler scaled echo and a time-shifted zero-Doppler replica is more difficult owing
to the change in the sweep rate (i.e., Doppler scaling produces a sweep rate of βη = ηW/Tp
[units: Hz/s] that differs from the β =W/Tp of the zero-Doppler replica). The approach taken for
the LFM pulse is to center the two instantaneous frequencies over their common frequency band.
When η > 1, this causes the instantaneous frequencies to match at

fmid =
ηf0 + f1

2
=

(η + 1)fc
2

− (η − 1)W

4
[units: Hz] (78)

where f0 and f1 are the low and high frequencies of the zero-Doppler LFM replica. When η < 1,
the sign of the second term changes. The delay required to match the two instantaneous frequencies
at fmid can then be shown to be

τbm =
∓Tpfc
W

(
1− 1

η

)[
η + η−1

2
− W

4fc

∣∣η − η−1
∣∣] [units: s] (79)

≈ ∓Tpfc
W

(
1− 1

η

)[
1 +

2v2

c2w
− W

fc
· cw|v|
c2w − v2

]
[units: s] (80)

≈ ∓Tpfc
W

(
1− 1

η

)
[units: s]. (81)

Ignoring the second-order terms produces (81), which is the same result obtained for the HFM
pulse in (76).

As noted in (77), the delay bias is approximately proportional to radial velocity. To simplify
notation in the analysis presented in the following sections, define the parameter

bm =
∓Tpfc
W

[units: s] (82)

so

τbm = bm

(
1− 1

η

)
[units: s]. (83)

This isolates the waveform-dependent components of the delay bias for the mth pulse into the
parameter bm.

14 Recalling the approximation from (77), bm can be interpreted as the delay bias
per unit Mach number (i.e., τbm is approximately bm multiplied by the effective Mach number for
two-way propagation, v/[cw/2]).

Although the approximations in (76) and (81) will often be adequate, it is important to verify
their validity by ensuring the errors are small relative to the accuracy of the time-delay measure-
ments (e.g., the square root of the CRLB on time delay when Doppler is known). This is particularly
important when using alternative processing such as an extended HFM matched filter [36] or for
low time-bandwidth-product pulses where inaccuracies near the edges of the frequency band affect
the instantaneous-frequency representation of the pulse. As a final note, when using a Doppler
filter bank to estimate time delays (e.g., for a Doppler-sensitive high time-bandwidth-product LFM
pulse), the time-delay estimates should be unbiased and the delay-bias multiplier set to zero.

14bm is similar to λ in [35, eq. 30].
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3.3 Least-squared-error estimators of range and radial velocity

The relationships derived in the previous sections provide the means for estimating Doppler
scale and OOI range using the arrival times of the echoes from multiple pulses. To accomplish
this, the time-delay measurement from the mth pulse must be described in terms of the unknown
parameters. Using (65) in (73), the arrival time of the mth echo is

tm = ttx⋆ +
2r⋆
cw

+
δm
η

(84)

= ttxm +
2r⋆
cw

−
(
1− 1

η

)
δm [units: s], (85)

where (85) is obtained by noting that ttx⋆ = ttxm − δm from (67).

The time delay between transmission of the mth pulse and when its echo is measured at the
sonar, accounting for the bias in delay induced by use of a zero-Doppler matched filter, is then

τm = tm − ttxm + τbm (86)

=
2r⋆
cw

+(bm − δm)

(
1− 1

η

)
[units: s]. (87)

To simplify the analysis, define the approximate radial velocity parameter to be estimated as

v⋆ =
cw
2

(
1− 1

η

)
=

v

1 + v/cw
[units: m/s]. (88)

When the radial speed is small relative to the speed of sound (|v| ≪ cw), then v⋆ is an accurate
surrogate for radial velocity. When it is not, an estimate of the radial velocity can be obtained
from the inverse relationship,

v =
v⋆

1− v⋆/cw
[units: m/s]. (89)

With v⋆ representing radial velocity, the time-delay measurements can be written as linear functions
of the unknown parameters,

τm =
2

cw
[r⋆ +(bm − δm) v⋆] [units: s]. (90)

This simplifies estimation of r⋆ and v⋆ from the time delays measured over multiple pulses through
the application of standard linear models (e.g., estimating the parameter vector x when noise-
free measurements have the form y = Ax). Placing the measurement times in the vector τ =
[τ1 τ2 · · · τM ]T , the pulse offset times in the vector δ = [δ1 δ2 · · · δM ]T , the delay-bias multipliers
in the vector b = [b1 b2 · · · bM ]T , and defining the vector of ones 1 = [1 1 · · · 1]T , the linear model
across M pulses can be written as

τ =
2

cw

[
1 d

] [r⋆
v⋆

]
[units: s], (91)

where d = b−δ combines the two delay terms and has dm = bm− δm [units: s] as its mth element.
In order to estimate the unknown parameters, there must be at least two measurements and the
columns of the model matrix A = (2/cw)[1 d] must be linearly independent. For example, if
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identical pulses are projected (i.e., all pulses have the same delay-bias multiplier), they cannot all
be projected simultaneously. Conversely, simultaneously projected pulses must have some diversity
in their delay-bias multipliers.

In practice, the time-delay measurements have errors. To represent this, let the estimates of
the time delays be

τ̂ = τ + e, (92)

where e is a vector of errors. The approach taken to estimate the unknown parameters depends
on the statistical characterization of e. If the pulses are orthogonal (e.g., disjoint in either their
temporal or spectral support), as is assumed here, the measurement errors will be uncorrelated. The
errors will typically have zero mean because the delay biases are already included in (91). However,
their variances can differ when different pulses are used or when conditions change between pulses
and SNR is affected. This can be accounted for by defining the covariance matrix of e as being
diagonal, Λ = E[eeT ] = diag{λ1, . . . , λM}, where λm [units: s2] is the variance of τ̂m, the mth time-
delay measurement. The off-diagonal terms are zero because the noise is uncorrelated. Given the
diagonal form of Λ, the parameters can be estimated using a weighted least-squared-error (LSE)
approach. Following the discussion in the penultimate paragraph of Sect. 2.4.2, it is reasonable
to assume the errors are Gaussian distributed when the SNR is high, in which case the maximum
likelihood estimate is the same as a weighted LSE solution.

The weighted LSE solution to a set of linear equations is found by whitening both sides of (91)
(e.g., by pre-multiplying by Λ−1/2) followed by pre-multiplying both sides by the pseudo-inverse

of the whitened model matrix (i.e., pre-multiply by
(
Λ−1/2A

)+
= (ATΛ−1A)−1ATΛ−1/2). This

results in

v̂⋆ =
cw

2Mσ2d

(
d− d̄1

)T
Wτ̂ [units: m/s] (93)

as an estimate of the radial velocity and

r̂⋆ =
cw

2Mσ2d

[(
σ2d + d̄2

)
1− d̄d

]T
Wτ̂ [units: m] (94)

for the estimate of the OOI range when it first interacts with the reference pulse. The diagonal
matrix W =MΛ−1/(1TΛ−11) has as its mth element

wm =
λ−1
m

1
M

∑M
m=1 λ

−1
m

=
λ̌

λm
[unitless], (95)

where

λ̌ =
1

1
M

∑M
m=1

1
λm

[units: s2] (96)

is the harmonic mean of the measurement variances. This weighting matrix acts to emphasize
measurements with lower variances and limit the contributions of those with higher ones. If the
measurements have the same variance, then W simplifies to an identity matrix. The terms

d̄ =
1TWd

M
=

1

M

M∑
m=1

wmdm [units: s] (97)
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and

σ2d =
dTWd

M
− d̄2 =

1

M

M∑
m=1

wm(dm − d̄)2 [units: s2] (98)

are, respectively, the weighted average and variance of the combined pulse-offset-time and delay-bias
terms.

Before evaluating the performance of these estimators, note that d̄ and σ2d can be decomposed
into similar components over the pulse offset times (δ̄ & σ2δ ) and delay-bias multipliers (b̄ & σ2b ):

d̄ = b̄− δ̄ [units: s] (99)

and

σ2d = σ2b + σ2δ − 2ρbδσbσδ [units: s2], (100)

where

ρbδ =
1

Mσbσδ

M∑
m=1

wm(bm − b̄)(δm − δ̄) [unitless] (101)

is a weighted sample correlation coefficient between the two.

The average over the delays δ1, . . . , δM can also be related to the time at which the hypothetical
reference pulse occurs within the pulse train according to

δ̄ = t̄tx − ttx⋆ [units: s], (102)

where

t̄tx =
1

M

M∑
m=1

wmt
tx
m [units: s] (103)

is the centroid of the pulse train with respect to time-delay estimation (i.e., it weights the pulse
onset times according to their time-delay estimation performance).

3.4 Performance bounds

By including the delay biases in the modeling, the delay estimates (for τm) are unbiased. Cou-
pling this with the linearity of the weighted LSE estimates implies v̂⋆ and r̂⋆ are also unbiased. The
variances of the two estimators,

Var{v̂⋆} =
c2wλ̌

4Mσ2d
[units: m2/s2] (104)

and

Var{r̂⋆} =
c2wλ̌

4M

(
1 +

d̄2

σ2d

)
[units: m2], (105)
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can also be easily obtained owing to the linear relationships. As might be expected, these results
imply performance improves as the number of pulses increases (M ↑), as the underlying delay esti-
mates improve (λ̌ ↓), or when the spread of the combined delay terms increases (σd ↑). Evaluation
of (104) and (105) requires knowledge of the variance of the time-delay measurements. This is
typically obtained through the use of CRLBs formed when Doppler is assumed to be known (e.g.,
from Sect. 2.4.1), despite the apparent contradiction. Although it is often small, the loss arising
from mismatch in Doppler between the echo and matched-filter replica should be included as a
reduction in SNR, which will act to increase λ̌.

It is clear from the result in (105) that estimation of range depends on when the hypothetical
reference pulse is projected. Noting from (99) and (102) that d̄ = b̄ −

(
t̄tx − ttx⋆

)
, it is tempting

to set ttx⋆ = t̄tx − b̄ so d̄ = 0 s. When this can be managed, the range estimate achieves its lowest
variance and is a factor of M smaller than that for a single pulse having time-delay variance equal
to the harmonic average over all the pulses. However, recalling that the delay-bias multiplier for
an LFM pulse is bm = ∓Tpfc/W , it is clear that this could place the reference pulse outside of
the wavetrain. When other factors do not dictate how to choose ttx⋆ , it will be set to the centroid,
ttx⋆ = t̄tx, even though it leads to a higher variance in the range estimate.

Examining (104), the inverse dependence on M can also be seen for the variance of the radial
velocity estimate. However, the spread of the delay terms (i.e., σ2d) can play an important role
either when similar pulses have large delays between them or when simultaneous or closely spaced
pulses have diversity in their delay-bias multipliers. As an example of the latter scenario, recall that
up- and down-sweeping LFM or HFM pulses have delay-bias multipliers with opposing signs. If
the delay-bias multipliers are negatively correlated with the pulse offset times, then (100) dictates
that σ2d will be larger than if they are positively correlated. As will be seen in Sect. 5.4, this leads
to better performance for a down-up LFM pulse pair than for an up-down pair.

The correlation coefficient between the range and radial velocity estimates can be shown to
equal

Corr. Coeff.{r̂⋆, v̂} =
−d̄√
σ2d + d̄2

[unitless]. (106)

Similar to the variance on the range estimate, designing the pulses so |d̄| is small has the advantage
of reducing the correlation between the range and radial velocity estimates.

3.4.1 Radial-velocity estimation with a uniform pulse train

When a sequence of identical pulses is projected and their echoes have the same SNR, the
variances of the time-delay measurement errors and the delay biases are constant. The latter
results in σ2d = σ2δ because σ2b = 0 s2. This simplifies the variance in (104) of the radial-velocity
estimate to

Var{v̂⋆} =
c2wσ

2
τ

4Mσ2δ
[units: m2/s2], (107)

where λ̌ = σ2τ is the variance of one time-delay measurement.

From [1, eq. 8.270] or from the discussion following (31), the CRLB for unbiased estimation
of time delay when Doppler is known with a frequency-modulated waveform and a deterministic
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signal model implies

σ2τ ≥ 1

8π2Sdσ2f
[units: s2], (108)

where Sd is the SNR after coherent detection processing of a single pulse and σ2f characterizes the

frequency variation over time. For example, σ2f = W 2/12 for an LFM waveform with bandwidth
W and for HFM waveforms when W/fc is not too large. Using this in (107) produces

Var{v̂} ≥ c2w
32π2MSdσ2δσ

2
f

=
3c2w

8π2MSdW 2σ2δ
[units: m2/s2] (109)

as a lower bound on the variance of multiple-pulse radial-velocity estimation when using the basic
FM pulses. Although this does not necessarily achieve the inverse dependence on center frequency
of the CW pulse (e.g., see (32)), it can be significantly better than a single LFM pulse when the
pulses are spread over a long period of time. For example, if the pulses are projected with a constant
repetition interval of ∆ [units: s], the variance

σ2δ =
∆2(M2 − 1)

12
, [units: s2] (110)

which is approximately proportional to the square of the total temporal span of the pulse train.
In Sect. 5.2.3, the result in (109) is seen to be very similar to the CRLB for incoherent echoes
developed in Sect. 4.3 (in fact it is identical for HFM pulses). This implies the time-delay-based
estimator of radial velocity will be efficient if the individual-pulse time-delay estimates are efficient
(e.g., as occurs when SNR is high enough).

4 Cramér-Rao lower bounds when estimation employs multiple
orthogonal pulses

Coherent detection processing in active sonar entails matched filtering the measured data, where
the replica used in the matched filter is constructed from the projected pulse and based on an as-
sumed Doppler scaling. When an active sonar projects multiple pulses in a wavetrain, the processing
approach depends on the assumptions made regarding the bulk phase observed in the echoes from
each pulse (e.g., ψ in (1) for a single pulse). If the bulk phase is expected to change from one pulse’s
echo to the next in an unknown manner, the inter-pulse processing is described as incoherent.15

However, if the bulk phase is constant across all of the echoes, the standard matched filtering is
applied with the sequence of pulses treated as a single continuous waveform. These two scenarios
will be referred to as having incoherent or coherent echoes. The terms comprising the Fisher infor-
mation matrix (FIM) and Cramér-Rao lower bound are developed in this section when estimating
radial velocity and time delay from multiple pulses under these two coherency assumptions.

Determining which phase condition applies requires considering how the sensing geometry and
propagation change from when one pulse is projected to the next (e.g., see [1, Sect. 7.2.3.1]). When
multiple pulses are projected in rapid succession, it is reasonable to assume their echoes will have

15For example, extending the derivation of the matched filter as a generalized likelihood ratio detector in [1, Sect.
8.2.3] to account for multiple orthogonal pulses with different unknown bulk-phase terms would result in a sum of
the squared moduli of the single-pulse matched-filter responses. This discards the phase after single-pulse matched
filtering and is therefore considered incoherent multiple-pulse processing.
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the same bulk phase—if they do not, then the echo from a single pulse is not likely to follow the
model in (1). However, this may not always be the case, as it is possible for pulses at different
frequencies to be subject to different propagation effects. At the other extreme, when pulses are
separated by large gaps of time (e.g., across multiple pings), the bulk phases of their echoes are
most likely different.

In contrast to the development in Sect. 3 where the range (r⋆) of the OOI was estimated, the
CRLBs derived in this report are based around estimating the time delay

τ⋆ =
2r⋆
cw

[units: s] (111)

associated with the reference pulse for a two-way monostatic sensing geometry. The tools required
to evaluate the multiple-pulse CRLBs for coherent and incoherent echoes are presented in Sects. 4.2
& 4.3, respectively. Restricting consideration to orthogonal pulses allows formulating the results
as a combination of the individual-pulse characteristic time-frequency parameters.

For coherent echoes, this is a straightforward extension of the characteristic time-frequency
parameters as they were defined in (11)–(13). The timing of the pulses is seen in Sect. 4.2 to affect
the Doppler-scale-related terms; a derivation of the results can be found in App. A.1. The analysis
for incoherent echoes is more complicated. It requires allowing the echo from each pulse to have a
different bulk phase, which increases the dimension of the FIM to M +2 when there are M pulses.
The CRLBs are formed from the diagonal elements associated with the delay and Doppler scale
parameters found in the inverse of the FIM formed over allM+2 unknown and coupled parameters.
Although the general form of the pertinent partition of the inverse FIM is presented in Sect. 4.3,
its derivation is relegated to App. A.2.

The bounds formed using the FIM terms shown in Sects. 4.2 and 4.3 are applied in Sect. 5
to several examples, in most cases aiming to obtain significant improvements in multiple-pulse
estimation of radial velocity when time delay is unknown.

4.1 Characterizing the pulses

To support the following discussion, the reader is referred to Table 2 (pg. 30) for definitions
of the temporal parameters related to the projected pulses and their echoes, which are the same
as those used in Sect. 3. Suppose the mth pulse has duration Tm [units: s] and an instantaneous
frequency fm(t) [units: Hz] described for the interval t ∈ (−Tm/2, Tm/2), so the center of the pulse
is its time origin. Because this is the same time origin used in Sect. 2.3, the characteristic time-
frequency parameters of the basic sonar pulses found in Table 1 (pg. 16) can be applied here to
evaluate multiple pulses. They are identified by using the subscript m; for example, the average
time (in units of periods) for the mth pulse is simply

c̄m =
1

Tm

∫ Tm/2

−Tm/2
tfm(t) dt [unitless] (112)

from (12).

As shown in App. A, the FIM terms for multiple pulses can be described by straightforward
combinations of the individual-pulse
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• characteristic time-frequency parameters (f̄m, Pfm , c̄m, Pcm , and r̄m),

• SNR (Sd
m), and

• time difference (δ̂m) between the individual-pulse center and the onset of the reference pulse,

for m = 1, . . . ,M .

Especially when pulse trains employ different pulse types or when there are large time gaps
between pulses, the individual-pulse SNRs can be expected to differ. Define the total linear-quantity
SNR across the M pulses as

Sd
tot =

M∑
m=1

Sd
m [unitless], (113)

where Sd
m is the SNR of the mth pulse. The individual-pulse SNRs weight their respective contri-

butions to the FIM and the total SNR in (113) facilitates characterizing the multiple-pulse CRLBs
for coherent echoes in a similar form to the single-pulse results found in (29)–(31).

When projecting multiple pulses, it is common to characterize them by the times at which they
are projected (e.g., ttxm [units: s] as the onset time of the mth pulse). Exploiting the characteristic
time-frequency parameters from Sect. 2.3 requires defining the time at which the center of the mth
pulse is projected. It is simply the onset time plus half the pulse width,

t̂txm = ttxm +
Tm
2

= ttx⋆ + δm +
Tm
2

= ttx⋆ + δ̂m. [units: s] (114)

As will be seen, it is convenient to use (67) to incorporate the onset time of the reference pulse (ttx⋆
[units: s]) into (114) and define

δ̂m = δm +
Tm
2

= ttxm − ttx⋆ +
Tm
2

(115)

as the time difference between the center of the mth pulse and the onset of the reference pulse.

4.2 Bounds for coherent echoes

When the bulk phase across a set of echoes is constant, they can be processed coherently so
each echo contributes information to the phase estimate. This generally occurs by implementing a
Doppler filter bank using replicas constructed from the full set of pulses. It is important that the
replicas are formed correctly accounting for the effect of radial motion on the inter-pulse transmis-
sion delays as described in Sect. 3.1. Although the pulses might span a significant period of time,
the model from (1) is still assumed to hold, so the echo from the OOI has the form Aejψ s̊(η[t− τ⋆]),
where s̊(t) is the analytic signal of the multiple-pulse waveform and the time delay of interest is τ⋆
from (111).

Using the definitions in (11)–(13), it is straightforward to show (see App. A.1) that the multiple-
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pulse characteristic time-frequency parameters are

f̄ =
1

Sd
tot

M∑
m=1

Sd
mf̄m [units: Hz], (116)

Pf =
1

Sd
tot

M∑
m=1

Sd
mPfm [units: Hz2], (117)

c̄ =
1

Sd
tot

M∑
m=1

Sd
m

(
c̄m + δ̂mf̄m

)
[unitless], (118)

Pc =
1

Sd
tot

M∑
m=1

Sd
m

(
Pcm + 2δ̂mr̄m + δ̂2mPfm

)
[unitless], and (119)

r̄ =
1

Sd
tot

M∑
m=1

Sd
m

(
r̄m + δ̂mPfm

)
[units: Hz] (120)

where δ̂m = δm + Tm/2 represents the time difference between the center of the mth pulse and the
onset of the reference pulse.

These can be used in (14)–(16) to obtain σ2f , σ
2
c , and ρ, which then allow forming the CRLBs

in (29)–(31) to represent the limits of unbiased coherent multiple-pulse joint estimation of the
parameters after replacing Sd with the total SNR from (113).

4.3 Bounds for incoherent echoes

When the bulk phase of the echo from one pulse is expected to differ from the others, the
number of unknown, coupled parameters in the estimation problem increases to M + 2 to account
for the M bulk phase terms, which are denoted by the vector ψ = [ψ1 · · ·ψM ]T . Fortunately, the
structure of the matrix allows a simple characterization of the 2-by-2 partition of the inverse FIM
associated with the time delay (τ⋆) and Doppler scale (η) parameters. As shown in (A33) from
App. A.2, this results in

{
FIM−1(τ⋆, η,ψ)

}
τ⋆,η

=
1

8π2

{
M∑
m=1

Sd
m

[
σ2fm −σfmσcmρm − δ̂mσ

2
fm

−σfmσcmρm − δ̂mσ
2
fm

σ2cm + 2δ̂mρmσfmσcm + δ̂2mσ
2
fm

]}−1

.

(121)

The CRLBs for time-delay and Doppler scale are obtained from, respectively, the first and second
diagonal elements of (121). As previously described, the bounds for range and radial velocity are
then obtained after multiplying by c2w/4. As will be seen in the examples in Sect. 5, this form often
simplifies to the point where the inverse of the 2-by-2 matrix in (121) can be obtained analytically.16

However, it is quite simple to evaluate computationally in the general case.

16Recall from linear algebra that the inverse of a 2-by-2 matrix is[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
. (122)
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4.4 Effect of changing the time of the reference pulse

In the CRLB analysis presented in this report, the time delay being estimated is that associated
with a (hypothetical) reference pulse having onset time ttx⋆ [units: s]. In Sect. 2.3, this was set to the
center of the projected pulse, which produces symmetry for LFM pulses and simplifies the analysis
over multiple pulses. However, the manner in which ttx⋆ is set typically depends on the application.
The results presented in Sect. 4.2 for multiple coherent echoes provide the tools required to assess
how changing ttx⋆ alters the CRLBs.

For a single pulse, the time delay between the middle of the pulse and the onset time of the
reference pulse is δ̂ = ttx +

Tp
2 − ttx⋆ from (115), where Tp [units: s] is the duration and ttx [units: s]

is the onset time of the one projected pulse considered here. Setting ttx⋆ to the center of the
pulse results in δ̂ = 0 s. Setting M = 1 in (116)–(120) produces the characteristic time-frequency
parameters for a shifted time origin,

c̄δ = c̄+ δ̂f̄ [unitless], (123)

Pcδ = Pc + 2δ̂r̄ + δ̂2Pf [unitless], and (124)

r̄δ = r̄ + δ̂Pf [units: Hz], (125)

where the subscript δ implies δ̂ ̸= 0 s. The parameters without a direct time dependence (i.e., f̄ ,
Pf and σ2f ) do not depend on δ̂ and therefore do not change when the time origin shifts. The other
parameters, however, have the form

σ2cδ = σ2c + 2δ̂ρσcσf + δ̂2σ2f [unitless] (126)

and

ρδ =
ρσc + δ̂σf

σcδ
=

ρσc + δ̂σf√
σ2c + 2δ̂ρσcσf + δ̂2σ2f

[unitless]. (127)

Setting δ̂ = 0 s clearly simplifies (126) and (127) to their original characteristic time-frequency
parameters, for which the time origin is the center of the pulse.

The sub-matrix of the inverse FIM for τ and η from (28) is then seen to be

{
FIM−1(τ, η, ψ)

}
τ,η

=

σ2c + 2δ̂ρσcσf + δ̂2σ2f ρσcσf + δ̂σ2f

ρσcσf + δ̂σ2f σ2f


8π2Sdσ2fσ

2
c (1− ρ2)

. (128)

As expected, setting δ̂ to zero yields (28) and it can be seen that changes to ttx⋆ do not affect
estimation of Doppler, only time delay and the correlation between the estimates. If a waveform
does not have time-frequency coupling when the origin is the center of the pulse (i.e., ρ = 0), it can
be seen that the correlation is proportional to δ̂ (and therefore depends on ttx⋆ ) and that the CRLB
for estimation of time delay (or range) is minimized at the middle of the pulse (i.e., when δ̂ = 0 s).

To build intuition on how changing the reference-pulse time affects time-delay estimation per-
formance for waveforms with coupling between time delay and Doppler, consider the onset of the
projected pulse, for which ttx⋆ = ttx and δ̂ = Tp/2. Using this in (123)–(127) for an LFM pulse
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will produce the results presented in [1, Sect. 8.5]. More importantly, because δ̂ is positive, using a
waveform with a negative value of ρ (e.g., a down-sweeping LFM or HFM) will provide better esti-
mation of the OOI range when the projected pulse first interacts with it than one for which ρ > 0.
Conversely, when the time delay associated with the end of the pulse is of interest, ttx⋆ = ttx + Tp,

δ̂ = −Tp/2 and a pulse for which ρ > 0 would be desirable (e.g., an up-sweeping LFM or HFM).
An intuitive explanation for this effect is that time-delay estimation is best when the onset time of
the reference pulse aligns with the highest frequencies in a waveform as they are the most sensitive
to Doppler. An extension of this to the case of predicting the range of an OOI with a uniform
pulse train is examined in Sect. 5.2.6 to corroborate the recommended use [11, 29] of up-sweeping
FM pulses in tracking rather than down-sweeping ones.

5 Examples

Several examples are presented in this section, exploring different approaches to estimating
radial velocity and time delay using multiple pulses. In Sect. 5.1, it is seen how combining concur-
rently projected CW pulses can improve time-delay estimation, which is a weakness of individual
CW pulses that are not short in duration. Generic results for a uniform pulse train are presented
in Sect. 5.2, with LFM and PLFM examples and an explanation for why up-sweeping FM pulses
are better for predicting range than down-sweeping ones (Sect. 5.2.6). Dividing an LFM pulse up
into constituent sub-pulses is examined in Sect. 5.3, where the potential gain is seen to depend
on bandwidth-dependent spreading losses. Various combinations of up- and down-sweeping LFM
pulses are shown to provide significant improvement to radial-velocity estimation in Sect. 5.4 and
illustrate the unexpected result that a down-up LFM pulse pair is better than an up-down one.
Finally, the common practice of projecting CW- and FM-pulse pairs is examined in Sect. 5.5 and
reveals the expected potential for improvements to un-biased time-delay estimation.

Throughout these examples it is seen that combining multiple pulses can lead to outsize improve-
ments (i.e., more reduction than accounted for by the M -fold increase in total SNR) to estimation
performance when there is diversity across the pulses. As might be expected for waveforms of the
same type, spectral diversity improves time-delay estimation and temporal diversity aids estimation
of radial velocity. Similar improvement can also be obtained by combining different types of pulses,
if they have the right type of diversity (e.g., combining up- and down-sweeping FM pulses).

When possible, the essential results of the examples are presented and discussed at the beginning
of each section, delaying the supporting material and derivations in order to make the analysis more
accessible. Finally, it should be noted that the focus of these examples is solely on estimation of
time delay and/or radial velocity. Many of the waveform combinations have disadvantages limiting
their utility in certain applications that are not discussed in any detail.

5.1 CW comb waveform

A disadvantage of CW pulses is their poor resolution in time (equivalently range), as was seen in
Sect. 2.4.1, and their susceptibility to reverberation when the OOI has low Doppler. An alternative
can be found in comb waveforms [37,38] formed by simultaneously projecting multiple CW pulses.
Although both coherent and incoherent processing approaches exist [37], the focus in this analysis
is on the former.

Suppose a comb waveform has duration Tp [units: s] and comprises M equal-amplitude CW
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pulses with the mth at frequency fm [units: Hz]. From the entries in the CW-pulse column in
Table 1 (pg. 16), the characteristic time-frequency parameters for the mth pulse are

f̄m = fm [units: Hz], (129)

σ2fm = 0, which leads to Pfm = f2m [units: Hz2], (130)

c̄m =
Tpfm
2

[unitless], (131)

σ2cm =
T 2
p f

2
m

12
[unitless], which leads to Pcm =

T 2
p f

2
m

3
[unitless], and (132)

ρm = 0 [unitless], which leads to r̄m =
Tpf

2
m

2
[units: Hz]. (133)

Letting δ̂m = 0 s sets the reference time to the center of the pulse. Using these to obtain the multiple-
pulse parameters in Sect. 4.2 under the assumption of a constant SNR (i.e., Sd

m = Sd
tot/M) leads

to

f̄ =
1

M

M∑
m=1

fm [units: Hz], (134)

σ2f =
1

M

M∑
m=1

(fm − f̄)2 [units: Hz2], (135)

σ2c =
T 2
p

12

(
4σ2f + f̄2

)
[unitless], and (136)

ρ =

√√√√ 3σ2f

4σ2f + f̄2
[unitless]. (137)

Although the individual pulses all have σ2fm = 0Hz2, the combined pulse has a frequency variation
in (135) related to the spread of the individual frequencies. If theM equal-amplitude CW pulses are
uniformly spaced throughout a frequency band having width W [units: Hz], the frequency variance
is σ2f =W 2(M +1)/[12(M −1)] [units: Hz2], which is greater than the W 2/12 achieved by an LFM
pulse with an equivalent bandwidth. However, the form of ρ in (137) suggests that the potential
improvement in time-delay esitmation comes at the cost of an increase in the coupling between
time delay and Doppler.

Using (135) and (137) in (29) and noting Sd
tot =MS0 from (113) results in

Var{τ̂} ≥

(
1 + 4σ2f/f̄

2
)

8π2Sd
totσ

2
f

(
1 + σ2f/f̄

2
) [units: s2] (138)

for the CLRB on time-delay estimation with the comb waveform when the radial velocity is un-
known. In contrast to the bound for a single CW pulse in (35), which is proportional to T 2

p , this
is inversely proportional to the frequency variance. Using the above result for σ2f when the fre-
quencies are uniformly spaced, (138) becomes comparable to the CRLB for an LFM pulse with
known Doppler in (36). As seen in [39], the pulses do not need to be equally weighted, which can
accentuate or dampen the improvement, depending on how the overall spectrum is shaped. How-
ever, it is important to recall that the CRLB represents small errors and that it fails when large
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errors are common (see the discussion in Sect. 2.2). Large errors are more likely to occur when
there are high sidelobes in the ambiguity or autocorrelation function, which is a distinct concern
for comb waveforms [39]. It is not uncommon for other considerations to play an important role in
the design of comb waveforms, including reverberation suppression, envelope consistency, and the
size/extent/location of the sidelobes [37–40]. The potential performance in time-delay estimation
indicated by (138) is one factor.

The CRLB for estimating radial velocity,

Var{v̂} ≥ 3c2w

8π2Sd
totT

2
p f̄

2
[
1 + σ2f/f̄

2
] [units: m2/s2], (139)

is obtained by using the above parameters in (31). Compared to (32), this result is marginally
better than M observations of a CW pulse at the average frequency (or one observation with an
SNR M times larger) with the inclusion of the term in brackets in the denominator of (139). It is
also identical to the bound obtained when the echoes are assumed to be incoherent and the results
of Sect. 4.3 are employed.

5.2 Sequences of identical pulses

Suppose a train of M identical pulses is projected with consistent conditions between pulses so
their echoes have the same SNR (Sd

0 ). Let the duration and bandwidth of an individual pulse be,
respectively, T0 [units: s] andW0 [units: Hz]. Each pulse has the same characteristic time-frequency
parameters, which will also be denoted by a subscript ‘0’ (e.g., f̄0 or σ2c0). As such, they must be
projected with no overlap in time and therefore satisfy the orthogonality requirements of Sect. 4.
When the pulses are close together in time and the echoes are assumed to be coherent, this scenario
might represent the use of a wavetrain to be processed coherently with a Doppler filter bank, in
which case the bounds on performance described in Sect. 4.2 apply. When the time between pulses
is large, however, the echoes are likely to have different bulk phases. This is representative of
scenarios where echoes from multiple consecutive pings are used to estimate radial velocity and
refine estimates of time delay and requires use of the results presented in Sect. 4.3.

The performance bounds for radial-velocity estimation in these two cases are illustrated in Fig.
3 for a sequence of equally spaced LFM pulses. As expected, the performance of the pulse train
is always better than using a single pulse with an unknown time delay (black solid line). In this
example, coherent processing is expected to achieve better radial-velocity estimation performance
than a single pulse with a known time delay (black dotted line). However, incoherent processing
only achieves this benchmark when the pulses have enough separation in time. The time-delay-
based performance bounds from Sect. 3.4 (gray dotted lines) illustrate the efficacy of the approach
in that they are very close to the CRLBs for incoherent pulses.

From a design perspective, the performance bounds only need to be low enough for the envi-
ronmental conditions (e.g., Doppler spreading) to dominate the estimation errors. Although these
vary with many factors (e.g., sea-state, internal-wave conditions, platform motion, etc.), they can
be quite small under calm conditions or at short range (e.g., spreading standard deviations well
under 1m/s). Assuming Gaussian-distributed estimation errors and a 95% confidence interval of
0.1m/s (≈ 0.2 kn) requires a standard deviation in the radial-velocity estimator of approximately
0.025m/s. As seen in Fig. 3, this performance might be achieved either using coherent processing

TR2303 45



UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

1 2 5 10 20 50 100
10-4

10-3

10-2

10-1

100

101

Sq
ua

re
-r

oo
t o

f C
R

LB
 o

n 
ra

di
al

 v
el

oc
ity

 [m
/s

]

Time between pulses divided by pulse duration [unitless]

Time-delay-based estimation 
(gray dotted lines)

Incoherent

Single LFM pulse 
(unknown time delay)

Single LFM pulse 
(known time delay)

Coherent

𝑀 = 2
𝑀 = 3

𝑀 = 5

𝑀 = 2
𝑀 = 3

𝑀 = 5

̅𝑓! = 1	kHz
𝑊! = 100	Hz
𝑇! = 1	s

𝑆!" = 10	dB

Figure 3: Square root of the CRLB for unbiased estimation of radial velocity for a uniform, equally
spaced LFM pulse train as a function of the time between pulses relative to the pulse duration.

with only a small separation between pulses or with incoherent processing and larger separations
(e.g., across multiple pings).

The themes seen in this example are supported by the equations for the bounds derived for
coherent echoes in Sect. 5.2.2 and those for the incoherent case in Sect. 5.2.3. As will be seen, center
frequencies will typically drive performance in the former, whereas bandwidths drive performance
in the latter.

5.2.1 Characterizing the pulse train

Although the example shown in Fig. 3 assumed the pulses were projected with a constant time
separation, the theoretical results will be seen to depend only on the average and variance of δ̂m
from (115), which is the time between the center of themth pulse and the onset time of the reference
pulse. Because the pulses are identical, the average simplifies to

δ̂ =
1

M

M∑
m=1

δ̂m = δ̄ +
T0
2

= t̄tx +
T0
2

− ttx⋆ [units: s] (140)

where δ̄ = 1
M

∑M
m=1 δm [units: s] and t̄tx = 1

M

∑M
m=1 t

tx
m [units: s]. When the reference pulse onset

is at the center of the pulse train, it can be seen that ttx⋆ = t̄tx + T0
2 so δ̄ = −T0/2 and δ̂ = 0 s,

which leads to additional simplification in the bounds for time delay.
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Noting that δ̂m = δm + T0/2, it is clear that the variance formed over δ̂m is identical to that
formed over δm or ttxm,

σ2
δ̂
= σ2δ =

1

M

M∑
m=1

(
δm − δ̄

)2
=

1

M

M∑
m=1

δ2m − δ̄2 =
1

M

M∑
m=1

(
ttxm − t̄tx

)2
[units: s2]. (141)

The representation of the variance as a sample power minus the squared mean is provided in (141)
as it is often an easier form to evaluate. As noted in (110), σ2δ = ∆2(M2 − 1)/12 [units: s2] when
there is a constant pulse repetition interval of ∆ [units: s].

5.2.2 Coherent echoes

If the bulk phase of the echoes from repeated projection of a pulse is assumed to be constant,
CRLBs are formed using the characteristic time-frequency parameters defined in Sect. 4.2. Using
constant parameters in (116)–(120) leads to the result

σ2c
(
1− ρ2

)
= σ2c0

(
1− ρ20

)
+ σ2δPf0 [unitless]. (142)

The CRLB on radial velocity estimation is then obtained from (31) as

Var{v̂} ≥ c2w
32π2MSd

0

[
σ2c0
(
1− ρ20

)
+ σ2δPf0

] [units: m2/s2]. (143)

Beyond the improvement in total SNR (a factorM), this illustrates how increasing the time between
pulse transmissions, which increases σ2δ , improves estimation of radial velocity. Recalling that
Pf0 = σ2f0 + f̄

2
0 , it can also be seen that performance will typically be driven by the center frequency

of the pulses, compared with the bandwidth dependence observed for a single LFM pulse in (40).
Additionally, this result applies to HFM pulse trains even though the bound does not exist for
single pulses (recall ρ0 = ±1 for HFM pulses).

The terms contributing to the CRLB for time-delay estimation for the uniform pulse train have
the form

σ2f
(
1− ρ2

)
=

σ2f0
[
σ2c0(1− ρ20)

]
σ2δPf0 − 2δ̂(1− ρ0)σc0σf0 +

[
σc0 + δ̂σf0

]2 [units: Hz2]. (144)

By setting the time-delay origin (for estimation) to that associated with the center of the wavetrain
(i.e., δ̄ = −T0/2 or δ̂ = 0 s), the result in (144) simplifies to

σ2f
(
1− ρ2

)
= σ2f0

[
1− ρ20

1 + σ2δPf0/σ
2
c0

]
[units: Hz2]. (145)

Using this in (29), the CRLB for time-delay estimation is seen to be

Var{τ̂} ≥ 1

8π2MSd
0σ

2
f0

[
1− ρ20σ

2
c0

σ2
c0

+σ2
δPf0

] [units: s2]. (146)

As σ2δ is increased, time-delay estimation performance tends to that obtained by a single pulse with
known Doppler and an SNR M times larger (i.e., the term in brackets tends to one).
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The correlation coefficient between time delay and Doppler estimates in this scenario (i.e.,
δ̂ = 0 s) is

ρ =
ρ0√

1 + σ2δPf0/σ
2
c0

[unitless]. (147)

This illustrates how the use of multiple pulses can significantly reduce the correlation between the
two estimates.

5.2.3 Incoherent echoes

When the bulk phase differs from one echo to the next, the CRLBs need to be constructed from
the results presented in Sect. 4.3. Using constant characteristic time-frequency parameters in (121)
produces

{
FIM−1(τ⋆, η,ψ)

}
τ⋆,η

=
1

8π2MSd
0

σ2f0 −σf0σc0ρ0 − δ̂σ2f0

−σf0σc0ρ0 − δ̂σ2f0 σ2c0 + 2ρ0δ̂σf0σc0 +
(
σ2δ + δ̂2

)
σ2f0

−1

(148)

where δ̂ = δ̄ + T0/2 [units: s] from (140). The determinant of the matrix within the brackets in
(148) is

| · | = σ2f0
[
σ2c0
(
1− ρ20

)
+ σ2δσ

2
f0

]
, (149)

which does not depend on δ̂. Using this to construct the CRLB on radial velocity from the (2, 2)
element of (148) as described in Sect. 4.3 results in

Var{v̂} ≥ c2w

32π2MSd
0

[
σ2c0
(
1− ρ20

)
+ σ2δσ

2
f0

] [units: m2/s2]. (150)

This only differs from the case of coherency between echoes in the last term in the denominator,
which contains σ2f0 here and Pf0 = σ2f0 + f̄20 in (143). As is often the case, incoherent processing
results in performance driven (inversely) by bandwidth rather than center frequency.

Making the simplification described in Sect. 5.2.2 with respect to δ̂ = 0 s results in a CRLB for
estimating time delay of

Var{τ̂} ≥ 1

8π2MSd
0σ

2
f0

[
1− ρ20σ

2
c0

σ2
c0

+σ2
δσ

2
f0

] [units: s2]. (151)

The result in (151) is similar to that seen in (146), with the exception of the Pf0 term found
within the brackets, which is replaced here by σ2f0 . However, the difference only acts to slow the

convergence of the term in brackets to one. In the limit as σ2δ → ∞, the CRLBs in (146) and (151)
tend to the same limit, which is M times smaller than that for a single pulse with known Doppler.
By increasing the separation between pulses, the lack of coherency between the echoes eventually
has a negligible impact on estimation of the time delay.
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Similar to the coherent/incoherent-echo differences noted above, the correlation coefficient be-
tween time delay and Doppler estimates can be shown to be

ρ =
ρ0√

1 + σ2δσ
2
f0
/σ2c0

[unitless], (152)

which is (147) with the Pf0 replaced by σ2f0 .

As a final note, the large-σ2δ limits in (150) and (151) are precisely the bounds obtained for
time-delay-based estimation found in Sect. 3.4. This does not imply these estimators achieve the
bound (i.e., that they are efficient), because the results from Sect. 3.4 utilize bounds on single-pulse
time-delay estimation. However, it suggests that they might at high SNR and after accounting for
the small SNR losses from mismatch between the echo and matched-filter replica.

5.2.4 Uniform LFM pulse trains

SupposeM LFM pulses having duration Tp, center frequency fc, and bandwidthW are projected
with a pulse repetition interval of ∆ [units: s]. Assuming the echoes are coherent results in the
CRLB

Var{v̂} ≥ 3c2w

8π2Sd
totf

2
c∆

2(M2 − 1)
[
1 + W 2

12f2c
+

T 2
pW

2

15∆2(M2−1)f2c

] [units: m2/s2] (153)

on radial velocity. The narrowband case for the coherent combination of an LFM pulse train was
evaluated in [22] and results17 in nearly the same form—the third term inside the brackets in (153),
which arises from σ2c0(1− ρ20) in (143), is zero in [22] owing to the value of ρ0 → 1 if the LFM pulse
is assumed to be narrowband.

If the echoes are incoherent, the CRLB on radial velocity from (150) is

Var{v̂} ≥
[

45c2w
8π2SdT 2

pW
2

]
1

1 + (M−1)2∆2

12T 2
p

[units: m2/s2], (154)

where the term in brackets is the single-pulse bound when time-delay is unknown from (40). This
exhibits the anticipated inverse dependence on the squared bandwidth and illustrates the improve-
ment in performance as the number of pulses (M) or their spacing relative to their duration (∆/Tp)
increases.

5.2.5 Waveform triplets

To demonstrate that the pulses in an identical pulse train do not need to be projected with
a constant repetition interval, consider the case of triplets of identical pulses with duration Tp
[units: s] and varying inter-pulse delays. Let the onset times of the three pulses be 0 s, γ1Tp,
and (γ1 + γ2)Tp, where γ1 and γ2 are unitless factors greater than or equal to one. It is then
straightforward to show that

δ̂ =
Tp(4γ1 + 2γ2 + 3)

6
− ttx⋆ [units: s] (155)

17To equate the results for the CRLB on velocity in [22, eq. 46] to (153), note that M = 2N + 1, W = 2K∆f ,
Sd
tot = SNRintegr, ∆ = IPP, and ∆2(M2 − 1) = T 2

D, with terms from [22] on the right sides of each equation.
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and

σ2δ =
2

9
T 2
p

(
γ21 + γ1γ2 + γ22

)
[units: s2]. (156)

Setting γ1 = γ2 = γ produces a constant time between pulses of ∆ = γTp and (156) simplifies to
σ2δ = 2γ2T 2

p /3, which is the same results as σ2δ = ∆2(M2 − 1)/12 from (110) with M = 3.

These can be used in the results of Sects. 5.2.2 & 5.2.3 to obtain the bounds for estimating
radial velocity and time delay. As an example, consider projecting HFM pulses, for which ρ0 = 1
and so simplifies the multiple-pulse results. If the frequency band is (f0, f1), then from Table 1
(pg. 16) Pf0 = f0f1, and σ

2
f ≈ (f1 − f0)

2/12. Using (156) in (143) then yields

Var{v̂} ≥ 3c2w
64π2Sd

0f0f1T
2
p

(
γ21 + γ1γ2 + γ22

) [units: m2/s2] (157)

for coherent echoes and

Var{v̂} ≥ 9c2w
16π2Sd

0 (f1 − f0)2T 2
p

(
γ21 + γ1γ2 + γ22

) [units: m2/s2] (158)

from (150) for incoherent echoes where Sd
0 is the linear-quantity SNR in the echo from a single

pulse. Recalling that the CRLB on radial velocity when time delay is unknown does not exist for
a single HFM pulse (Sect. 2.4.2), both of these scenarios represent an improvement even when γ1
and γ2 are not large.

5.2.6 Up-sweeping FM pulses are better for predicting range

An interesting result [11, 29] found when accounting for the effects of using a sequence of up-
or down-sweeping FM pulses in a tracking algorithm to predict the position of an OOI is that
up-sweeps provide better range estimation. This can be examined here by accounting for δ̂ in the
CRLB for time delay, which leads to

Var{τ̂} ≥
σ2c0 + 2ρ0δ̂σf0σc0 +

(
σ2δ + δ̂2

)
σ2f0

8π2MSd
0σ

2
f0

[
σ2c0(1− ρ20) + σ2δσ

2
f0

] [units: s2] (159)

when the echoes are assumed to be incoherent. For waveforms where |ρ0| ≈ 1, this can be approx-
imated by

Var{τ̂} ≥

[
σc0
σf0

+ sign{ρ0} δ̂
]2

+ σ2δ

8π2MSd
0σ

2
f0
σ2δ

[units: s2], (160)

where ρ0 is positive for up-sweeps and negative for down-sweeps.

Suppose the M pulses used in the estimation are projected every ∆ [units: s] with onset times
ttxm = (m− 1)∆ [units: s] for m = 1,. . . ,M and that the onset time of the reference pulse (the one
for which the range is being estimated) is ttx⋆ =M∆ [units: s]. This represents a prediction of the
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range of the OOI corresponding to the time at which the next pulse is to be projected. For this
scenario,

δ̂ = δ̄ +
Tp
2

=
1

M

M∑
m=1

ttxm − ttx⋆ +
Tp
2

=
−(M + 1)∆

2
+
Tp
2
< 0 [units: s], (161)

so the value of δ̂ is negative (recall that ∆ ≥ Tp for identical pulses) and has a magnitude that
is roughly half the temporal span of the pulse train. In (160), choosing a waveform for which ρ0
is positive (e.g., an up-sweeping FM) when δ̂ is negative is clearly better than one for which ρ0 is
negative. Conversely, if the projection time of the pulse prior to those being used were of interest
(e.g., the retrodiction problem for which ttx⋆ = −∆), then δ̂ > 0 s and choosing a waveform for
which ρ0 is negative (e.g., a down-sweeping FM) is better than one with ρ0 > 0.

This result corroborates the analysis found in [11,29], which considers the problem in the context
of a tracker. These authors describe the result as depending on the sign of the correlation between
estimates of range and radial velocity—in particular that better performance is achieved when the
signs differ between the correlation for a single pulse and that characterizing the prior information in
the tracker because there is less overlap in the uncertainty when they are combined. An alternative
explanation introduced in Sect. 4.4 can be found in noting that having the highest frequencies in
the waveform (which provide the most information on Doppler) closer to the time of the reference
pulse provides the best performance. In the context of multiple pulses, any reference times after
the center of the pulse train are closer to the higher frequencies in up-sweeps than those found in
down-sweeps. This interpretation directly implies that up-sweeping pulses are better for prediction,
down-sweeping ones for retrodiction, and suggests a weakening of the effect as the reference pulse
becomes more distant.

The utility of the simple result found in (160) is that it can provide guidance on how frequently
a pulse should be projected in order to minimize the CRLB on predicting OOI range at the next
update. Given ζ =W/fc [unitless] for an LFM or HFM pulse and a fixed number of pulses (M) to
be used in the prediction, the optimal pulse repetition interval (PRI) is

∆opt =
1

M + 1

(
2fc
W

+ 1

)
Tp [units: s]. (162)

For example, using M = 3 echoes from a waveform with 100Hz of bandwidth centered at 2 kHz
(i.e., ζ = 1/20) should have a PRI of ∆opt = 10.25 · Tp [units: s]. When the range scale (dictating
the minimum time between pulses) does not permit projecting pulses so rapidly, an analysis using
the general results in Sect. 4.3 might reveal if placing them in different frequency bands achieves
similar results.

As a final note, recall that the performance of the time-delay-based estimator presented in
Sect. 3.4 depended on d̄ = b̄ − δ̄. Noting that σc0/σf0 ≈ Tpfc/W [units: s] for LFM and HFM
waveforms, which is essentially the same as |b̄| for these waveforms, it can be seen that the term
within the brackets in the numerator of (160) is very similar to d̄. This suggests the time-delay-
based estimator has similar behavior.

5.2.7 Uniform PLFM pulse trains

Recall that the power-law FM (PLFM) pulse described in Sect. 2.3.1 can represent the basic
CW (p = 0), LFM (p = 1), and HFM (p = −1) sonar waveforms. It also provides some measure of
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control of the Doppler and delay characteristics for a given waveform bandwidth, as was detailed
in [7] in terms of the ambiguity function. The authors in [7] described a reduction in performance
under reverberation-limited conditions as a consequence of this benefit, which suggests not letting
p get too close to zero. Up-sweeping PLFM pulses are examined here in Figs. 4 & 5 for multiple-
pulse estimation of delay and Doppler through the CRLBs for incoherent echoes. These figures also
convey the inherent compromise between estimating Doppler and delay when using only one of the
basic sonar pulses. The bounds shown in the figures are formed from the incoherent-echo results
found in (150) and (151) using the characteristic time-frequency parameters of the PLFM pulse
presented in Sect. 2.3.2. Each echo had SNR ≈ 17.3 dB, center frequency fc = 2kHz, bandwidth
W = 200Hz, and duration Tp = 0.2 s. The SNR was chosen using (32) so the square root of the
CRLB for estimating radial velocity with a single CW pulse at fc was 0.1m/s.

In Fig. 4, the square root of the CRLB on unbiased estimators of time delay is shown as a
function of p for a single pulse (solid blue line), two consecutive pulses (reddish-brown line), and
five consecutive pulses (gold line). The solid lines represent the case where both the time delay and
radial velocity of the echo are unknown. The blue dotted line is for a single pulse when the radial
velocity is known. The poor performance expected for time-delay estimation with CW pulses is
evident at p = 0, but also seen near p = −1 for a single HFM pulse. The latter occurs because
these results assume concurrent estimation of radial velocity and the HFM has full coupling (ρ = 1)
between delay and Doppler, as was discussed in Sect. 2.4.2. Using multiple HFM pulses, however,
demonstrates performance only marginally worse than that of the LFM pulse. An interesting result
is seen here and in Fig. 5 in the small magnitude of the slope of the multiple-pulse bounds except
when p nears zero. This implies that there may be little to gain in multiple-pulse estimation
performance by modifying p from the basic LFM or HFM waveforms.

The dotted blue line in Figs. 4 or 5 represents the bound when one parameter is known. As
described in Sect. 3, this result is useful in radial-velocity estimation when a (biased) time-delay
estimate is obtained from a single matched filter (e.g., with a zero-Doppler replica) and any mis-
match with the echo is absorbed as a reduction in SNR. The results seen in Fig. 5 illustrate that
unbiased estimation with multiple pulses can still have a higher variance than a biased estimate
from a single pulse, although separating the pulses more in time can change this, as was shown in
Fig. 3.

The blue dots in these figures are obtained using the standard single-pulse results and confirm
the corresponding PLFM cases. Near p = 0 in Fig. 5 (detailed in the inset graph), the PLFM
results might be expected to tend to the standard CW pulse results using f0 (when p → 0 from
below) or f1 (when p → 0 from above). However, using the asymptotic values of the waveform
parameters found at the end of Sect. 2.3.2 as p → 0 from above with f0 and f1 held constant, the
CRLB for estimating radial velocity when delay is also unknown can be shown to be four times
larger than (32) (replacing fc with f1). The factor of four arises from the limit shown in (26),
ρ →

√
3/2, which leads to 1/(1 − ρ2) → 4. In Fig. 5, the limits on the square root of the CRLB

for a single PLFM pulse with unknown time delay (solid blue line) tend to points twice as large as
those observed when time delay is assumed to be known (usingM pulses results in a factor 2/

√
M).

This abnormality occurs because the bandwidth of the PLFM in this example is fixed; letting it
tend to zero with p (in particular, W ∝ p2) produces the result expected from (32). However, this
negates the desirable bandwidth-related properties of the PLFM.
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Figure 4: Square root of the CRLB for estimation of time delay as a function of the power law in
a PLFM waveform for 1, 2, and 5 consecutive pulses with incoherent echoes. Solid lines represent
the case of unknown radial velocity.
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5.3 Reconstituting an LFM pulse

Consider an LFM pulse with duration Tp, bandwidth W , and center frequency fc. It can be
described as comprising M consecutive LFM sub-pulses with each occupying 1/M of the duration
and 1/M of the bandwidth. Performance bounds for estimation of radial velocity from the sub-
pulses are examined in this section, initially under the assumption that the echo from the OOI
is a single-path reflection from a point target. With no spreading losses, the SNR in each sub-
pulse echo is Sd

m = Sd
tot/M under both noise- and reverberation-limited conditions. As might be

expected, coherent processing of the sub-pulses achieves the full-pulse coherent-processing result
found in Sect. 2.4.2. In Sect. 5.3.2, the bound for incoherent processing is found to be nominally
M2/5 times greater than the full-pulse coherent-processing result when M is three or larger, owing
to the compounding of the reduced SNR and the reduced temporal resolution of each sub-pulse. In
Sect. 5.3.3, it is seen that the bound from Sect. 3.4 for the time-delay-based approach to estimating
radial velocity from multiple pulses is only marginally larger than the CRLB for incoherent echoes,
which potentially provides a nearly efficient estimation approach (i.e., the estimator will nearly
meet the bound at high SNR).

These results imply coherent processing of the full pulse is the best approach for estimating
radial velocity when there is no spreading. As discussed in Sect. 5.3.2, temporal spreading losses
would typically encourage incoherent processing after splitting the full pulse in half and sometimes
in thirds. However, at some point the M2/5 multiplicative-factor increase in the bound becomes
too much to counter.

Although the results presented here are derived for an up-sweeping LFM, they apply to a
down-sweeping one as well. In support of the analysis presented in this section, the characteristic
time-frequency parameters of the sub-pulses are presented in Sect. 5.3.4 along with a number of
intermediate terms encountered when the results are derived.

5.3.1 Coherent echoes

Using the characteristic time-frequency parameters for the sub-pulses (as defined in Sect. 5.3.4)
in the parameters for coherent echoes from (116)–(120) with a constant SNR will produce (after
prodigious amounts of algebra) the results shown in Table 1 (pg. 16) for the full LFM pulse duration,
bandwidth, and center frequency. Although this exercise is left to the diligent reader, the veracity
of the claim is straightforward to demonstrate numerically.

5.3.2 Incoherent echoes and the impact of spreading loss

Using the definitions and intermediate terms found in Sect. 5.3.4, the inverse FIM from (121)
for M equal-SNR incoherent echoes can be shown to be

{
FIM−1(τ⋆, η,ψ)

}
τ⋆,η

=
3M2

2π2Sd
tot

{[
W 2 −TpWfc

−TpWfc T 2
p f

2
c + T 2

pW
2 (5M

2−4)
15M2

]}−1

, (163)

where Sd
tot [unitless] is the SNR for the full LFM pulse. Inverting this, taking the second diagonal

and scaling it by c2w/4 then produces the CRLB for estimation of the radial velocity when the
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echoes are incoherent,

Var{v̂} ≥

[
45c2w

8π2Sd
totT

2
pW

2

]
M2

5− 4
M2

[units: m2/s2]. (164)

The term in brackets is the bound for the full pulse from (40), which would be attained if the sub-
pulse echoes were coherent. The remaining part of (164), the functionM2/(5−4/M2), characterizes
the factor by which the bound increases when the sub-pulse echoes are incoherent. The first few
values of this function are

M = 1 2 3 4 5 6

M2

5− 4
M2

= 1 1 1.98 3.37 5.17 7.36 → M2

5 .
(165)

Interestingly, it equals one for both M = 1 and M = 2, which implies there may be no loss when
the LFM is split in half and processed incoherently. However, any additional deconstruction leads
to a bound that tends toward a factor M2/5 larger than that for coherent processing.

In scenarios where spreading losses (which increase with bandwidth) cause the SNR at band-
width W/M to be greater than Sd

tot/M (see [41, Fig. 9(a)] for an example obtained from experi-
mental data), there may be some gain in performance whenM is small. Suppose the SNR observed
for the full LFM pulse is represented by an unspread total SNR (Sd

unspr [unitless]) reduced by a
factor Lesl(W ) [unitless] to account for the spreading,

Sd
tot =

Sd
unspr

Lesl(W )
[unitless]. (166)

The loss term is unity (i.e., no loss) when W = 0Hz and is generally assumed to be monotonically
increasing with bandwidth. The SNR in one of M sub-pulses of the LFM is then

Sd
m =

Sd
unspr

MLesl(W/M)
=

Sd
totLesl(W )

MLesl(W/M)
≥ Sd

tot

M
[unitless]. (167)

When there is no spreading, Lesl(W ) = Lesl(W/M) = 1 and the result presented in (164) holds.
As in the unspread case, the M in the denominator accounts for a reduction in the total energy
of a single sub-pulse in noise-limited scenarios or the increase in the temporal extent of the sonar
resolution cell in the reverberation-limited case.

When there is spreading, the total SNR achieved by M sub-pulses having the SNR in (167) is

MSd
m =

Sd
unspr

Lesl(W/M)
[unitless]. (168)

Using this in lieu of Sd
tot in (164) and forming the ratio between the CRLB using M sub-pulses and

that for the full pulse results in

CRLB with M sub-pulses

CRLB for full pulse
=

Lesl(W/M)M2

Lesl(W )[5− 4/M2]
[unitless]. (169)

If the effect of the spreading is strong enough, this ratio will be less than one (clearly it is unity
when M = 1) and sub-pulse processing can be expected to yield a better estimate of radial velocity
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than full-pulse processing. The logarithmic-quantity energy spreading loss often used in the sonar
equation is

ESL(W ) = 10 log10 Lesl(W ) [units: dB]. (170)

Converting (169) to decibels then illustrates that sub-pulse processing is beneficial when

ESL(W )− ESL

(
W

M

)
> 20 log10(M)− 10 log10

(
5− 4

M2

)
[units: dB]. (171)

Note that this assumes the spreading only impacts estimation of radial velocity through a reduction
in SNR.

Suppose the difference in the spreading losses is approximated by

ESL(W )− ESL

(
W

M

)
≈ M log10(M), (172)

where M is the slope of the loss in units of decibels per decade change in bandwidth. Setting
M = 10dB/decade yields the asymptotic regime (i.e., high bandwidth) of exponential- or Gaussian-
shaped spreading [1, pg. 609, Fig. 8.34] and the results of [41, Fig. 9(a)] illustrate a case where
M < 10 dB/decade. Using this model for the spreading loss implies that incoherent sub-pulse
processing might improve estimation of radial velocity when the spreading-loss slope satisfies

M > 20−
10 log10

(
5− 4

M2

)
log10M

[units: dB/decade]. (173)

The first few values of the right side of (173) are

M = 2 3 4 5

M > 0 6.2 8.8 10.2 dB/decade.
(174)

This suggests there will be an improvement to radial-velocity estimation by splitting an LFM pulse
in half and possibly in thirds or fourths when the full-bandwidth waveform is subject to nominal
spreading and remains in the asymptotic regime where (172) holds. ForM ≥ 5, the spreading losses
need to be exceedingly large and the reduced bandwidth (W/M) may bring the spreading out of
the asymptotic regime, which yields smaller values of M. Although some gains in radial-velocity
estimation are attainable through sub-pulse processing of a high-bandwidth LFM pulse when it is
subject to temporal spreading, there is a limit beyond which performance will degrade.

5.3.3 Time-delay-based estimation

In addition to the definitions and intermediate terms found in Sect. 5.3.4, the time-delay-based
estimation approach requires defining the delay bias per unit Mach number from (82) for the mth
(up-sweeping LFM) sub-pulse,

bm =
−(Tp/M)f̄m

W/M
=

−Tpf̄m
W

[units: s], (175)

and the net delay affecting the mth sub-pulse,

dm =
Tp
M

(
1 +

M

2
−m− Mf̄m

W

)
[units: s], (176)
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from (91). When using these definitions, the variance in the net delay across the sub-pulses from
(98) is

σ2d =
T 2
p (M

2 − 1)

3M2
[units: s2], (177)

where each has the same variance in its time-delay estimate (i.e., λ̌, which depends on the sub-pulse
SNR and bandwidth, is constant). The variance of each time-delay estimate is obtained from (36)
and used with (177) in (104) to obtain the bound

Var{v̂} ≥

[
45c2w

8π2Sd
totT

2
pW

2

]
M2

5− 5
M2

[units: m2/s2] (178)

on the variance of the radial-velocity estimate. Note that (178) only differs from (164) by having
a ‘5’ in the 5/M2 term in the denominator rather than a ‘4’. This represents a minor penalty for
the time-delay-based approach: the bound in (178) is ≈ 7% higher than (164) when M = 2 and
less than 1% higher when M = 5.

5.3.4 Characterizing the sub-pulses

In support of the results presented in the previous sections, definitions of the sub-pulses com-
prising the full LFM pulse, their characteristic time-frequency parameters, and other intermediate
terms are presented in this section. Those not delving into the derivations are encouraged to skip
ahead to Sect. 5.4, which examines pairs of up- and down-sweeping LFM pulses.

Decomposing an up-sweeping LFM pulse intoM sub-pulses results in the mth sub-pulse having

duration Tm =
Tp
M

[units: s], (179)

bandwidth Wm =
W

M
[units: Hz], (180)

center frequency f̄m = fc −
W

2
+

(
m− 1

2

)
W

M
[units: Hz], and (181)

onset time ttxm = (m− 1)
Tp
M

− Tp
2

[units: s] (182)

for m = 1,. . . ,M . From the LFM-pulse column in Table 1 (pg. 16) this leads to the characteristic
time-frequency parameters

σ2fm =
W 2

12M2
[units: Hz2], (183)

c̄m =
TpW

12M2
[unitless], (184)

σ2cm =
T 2
p f̄

2
m

12M2

(
1 +

ζ2m
15

)
[unitless], and (185)

ρm =
1√

1 + ζ2m/15
[unitless], (186)

where ζm =Wm/f̄m [unitless]. It is also useful to note that

ρmσcmσfm =
TpWf̄m
12M2

[units: Hz], (187)
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which conveniently does not depend on ζm. In addition to the characteristic time-frequency pa-
rameters, the pertinent time delay parameters from Table 2 (pg. 30) are required. Assuming a
reference time at the center of the pulse (i.e., ttx⋆ = 0 s) leads to

δm =(m− 1)
Tp
M

− Tp
2

or δ̂m =

(
m− 1

2

)
Tp
M

− Tp
2

[units: s] (188)

as the time delay between, respectively, the onset or center of the mth sub-pulse and the onset of
the reference pulse.

When the sub-pulses have the same SNR, a number of intermediate terms with the FIM or
its inverse simplify into averages over various quantities describing the sub-pulses. To facilitate
derivation of the results presented in the previous sections, the following intermediate terms are
presented for the reconstituted LFM pulse. The pertinent frequency-related terms are

1

M

M∑
m=1

f̄m = fc [units: Hz],
1

M

M∑
m=1

σ2fm =
W 2

12M2
[units: Hz2], (189)

and

1

M

M∑
m=1

f̄2m = f2c +
W 2(M2 − 1)

12M2
[units: Hz2]. (190)

The average of the time-in-units-of-periods variance is

1

M

M∑
m=1

σ2cm =
T 2
p f

2
c

12M2

[
1 +

W 2

12f2c

(
1− 1

5M2

)]
[unitless]. (191)

Terms related to the sub-pulse delays include

δ̂ =
1

M

M∑
m=1

δ̂m = 0 [units: s] and σ2δ =
T 2
p (M

2 − 1)

12M2
[units: s2]. (192)

Finally, the relevant cross-terms include

1

M

M∑
m=1

δ̂mf̄m =
WTp(M

2 − 1)

12M2
[unitless], (193)

1

M

M∑
m=1

ρmσcmσfm =
TpWfc
12M2

[units: Hz], (194)

and

1

M

M∑
m=1

ρmσcmσfm δ̂m =

(
TpW

12M2

)2

(M2 − 1) [unitless]. (195)
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5.4 Pairs of up- and down-sweeping LFM pulses

The time-frequency correlation coefficient (ρ) of an LFM or HFM pulse, as seen in Table 1 (pg.
16), is positive for up-sweeping waveforms and negative for down-sweeping ones. This diversity
suggests that combining up- and down-sweeping waveforms could improve estimation of radial
velocity. Consecutively projecting these pulses produces what have been termed up-down (rooftop)
and down-up (vee) LFM or HFM waveforms. Concurrent projection with full overlap in frequency
produces a cross or X waveform. Although the focus of this section is on LFM pulses, the results
are similar for HFM pulses. As discussed in the following sections, each of these combinations has
the desired effect of producing a CRLB for estimation of radial velocity driven (inversely) by center
frequency as opposed to bandwidth. The bounds are presented in Table 3 and Fig. 6 relative to
the CRLB for radial velocity estimation using a CW pulse with the same total duration (Tp) and
center frequency (fc), which from (32) is

Var{v̂} ≥ 3c2w
8π2Sd

totT
2
p f

2
c

[units: m2/s2]. (196)

These results assume the total duration (Tp) and total SNR (Sd
tot) are the same across all examples.

Although simultaneously projected up- and down-sweeping LFM pulses are not orthogonal when
they occupy the same frequency band, their correlation is small. In this analysis, they are assumed
to be orthogonal, which allows evaluation of the X-LFM and the time-delay-based approach to
estimating radial velocity (which requires the time-delay estimates to be independent). In most
scenarios, the bulk-phase will be the same for waveforms such as these that have similar frequency
content and are projected concurrently or consecutively. However, when the probability of detection
from the individual pulses is reasonably high, incoherent processing such as the time-delay-based
approach of Sect. 3 is appealing for its reduced computational complexity (i.e., it only requires two
matched filters as opposed to a Doppler filter bank). As seen in Sect. 5.4.2, the X-LFM waveform
has advantages in these scenarios over the up-down and down-up waveforms.

Table 3: CRLB for estimating radial velocity from a pair of up- and down-sweeping LFM
pulses with bandwidth W , center frequency fc, and total duration Tp relative to that for
a CW pulse with the same duration and center frequency as a function of ζ =W/fc. The
upper and lower signs in the ± symbols in the consecutive-projection column represent,
respectively, the up-down and down-up sequences.

Bulk phase or Consecutive Concurrent

processing projection projection

Coherent
1

1∓ ζ/2 + ζ2/10

1

1 + 3ζ2/20

Incoherent
4

1∓ ζ + 19ζ2/60

1

1 + ζ2/15

Time-delay-based
4

1∓ ζ + ζ2/4
1
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Figure 6: Square root of the CRLB for unbiased estimation of radial velocity relative to that for a
CW pulse for combinations of up- and down-sweeping LFM pulses as a function of the bandwidth-
to-center-frequency ratio (ζ).

5.4.1 Up-down and down-up LFM waveforms

Consider consecutively projecting one LFM of each sweep direction (i.e., an up-down LFM
or a down-up LFM), where the two pulses occupy the same frequency band and have duration
Tp/2 so the total transmit duration is Tp. The pertinent time and delay parameters required to
derive the various performance bounds are found in Table 4. Using these with the characteristic
time-frequency parameters of up- and down-sweeping LFM pulses from Table 1 (pg. 16) in the
results of Sects. 3 and 4 leads to the results seen in Fig. 6. Equations for the bounds can be
formed by multiplying the functions found in Table 3 under the consecutive-projection column by
the CW-pulse bound in (196). Note that the upper and lower symbols in ∓ refer to, respectively,
the up-down and down-up waveforms.

As might be expected, the coherent results tend to that of the CW pulse as bandwidth is
reduced (i.e., the corresponding equations in Table 3 tend to one as ζ → 0). Similarly, both of
the incoherent results for consecutive projection tend to a bound four times larger. As ζ → 0, this
represents the case of using two CW pulses with each having half the SNR (Sd

tot/2) and half the
duration (Tp/2), which leads to the factor-of-four increase:

Var{v̂} ≥ 1

2
· 3c2w

8π2
(
Sd
tot
2

)(
Tp
2

)2
f2c

= 4 · 3c2w
8π2Sd

totT
2
p f

2
c

[units: m2/s2]. (197)

↑ ↑ ↖
two pulses half the SNR half the duration

With the exception of the time-delay-based approach for an up-down LFM waveform with a high
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bandwidth-to-center-frequency ratio, the bounds are dominated by the center frequency as opposed
to the bandwidth dependence of a single LFM pulse seen in (40). Compared to using an equivalent-
duration single LFM pulse (gold line), the coherent pairs of up- and down-sweeping pulses (solid blue
and reddish-brown lines) are significantly better when they are not strongly broadband. Although
the down-up LFM pair is better than an equivalent duration CW pulse at the center frequency, it
is not as good as placing the CW at the highest frequency in the band (i.e., at fc +W/2).

It is also interesting to note that the down-up LFM waveform has lower bounds than the up-
down LFM waveform, which corroborates the observations in [42] when using similarly constructed
HFM pulses. This is seen to arise from the negative correlation of the terms comprising the products
δ̂mr̄m in (119) and ρmδ̂m in (121) for the up-down LFM as opposed to their positive correlation for
the down-up pulse. The latter causes an increase in the information in these terms when they are
combined across the two pulses. The former results in the minus signs seen in Table 3, which act
to increase the CRLB. From a more practical perspective, this can also be explained by the highest
frequencies in each LFM occurring at the beginning and end of the down-up waveform rather than
in the middle as for the up-down waveform. This has the effect of increasing the variance of the
temporal character of the pulse in units of periods (i.e., σ2c ) because there are more zero crossings
(i.e., shorter periods or higher frequencies) at the extremes in time.

Table 4: Pertinent time and delay parameters for the different LFM pulse pairs

Consecutive Consecutive Concurrent
Parameter Units Up Down Down Up Up Down

Tm s Tp/2 Tp/2 Tp/2 Tp/2 Tp Tp

δm s −Tp/2 0 −Tp/2 0 −Tp/2 −Tp/2

δ̂m s −Tp/4 Tp/4 −Tp/4 Tp/4 0 0

bm s −Tpfc
2W

Tpfc
2W

Tpfc
2W −Tpfc

2W −Tpfc
W

Tpfc
W

σ2d s2
T 2
p f

2
c

4W 2

(
1− ζ + ζ2

4

)
T 2
p f

2
c

4W 2

(
1 + ζ + ζ2

4

)
T 2
p f

2
c

W 2

5.4.2 X-LFM waveform

An advantage of the up-down and down-up LFM pulses is that they have constant envelopes,
which allows operating the projector near its maximum source power level. When this is not a
concern, projecting the up- and down-sweeping LFM pulses concurrently, with each having am-
plitude a factor 1/

√
2 smaller than that for a single pulse, has some advantages. The X-LFM

waveform is one in which the pulses have the same temporal and spectral support. This causes
the two pulses to be weakly correlated rather than orthogonal, which makes the analysis an ap-
proximation to performance and might lead to reverberation from one pulse affecting the other.
As such, it is useful to also consider concurrent projection of the pulses in the frequency bands
(fc−W, fc) and (fc, fc+W ) so they are orthogonal owing to frequency diversity, but use twice the
bandwidth. Interestingly, when the expanded frequency band does not alter the individual-pulse
SNRs, the velocity-estimation bounds for these two scenarios are identical18 (i.e., they both result
in the equations shown in the right-most column in Table 3). As seen in Fig. 6, the concurrently

18In Table 4, the values of bm for the frequency-diverse pulses are −Tp(fc −W/2)/W and Tp(fc +W/2) when the
up-sweep is in the lower frequency band.
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projected LFM results fall between the bounds for coherent consecutively projected up and down
LFM pulses. However, the incoherent processing does not incur the factor-of-four increase in the
CRLB owing to the pulse durations of the two individual pulses not being halved. When incoherent
processing is employed, this result supports using concurrently projected up- and down-sweeping
LFM pulses as opposed to projecting them in sequence.

5.5 FM-CW pulse pair

A common practice in active sonar systems is to transmit both a CW pulse and an FM pulse
in the same ping [9, 10]. The CW pulse provides a high quality estimate of radial velocity and the
FM pulse lends some protection when reverberation limits detection of the CW echo. Although the
FM pulse by itself has difficulty with unbiased estimation of time delay when Doppler is unknown
(as described in Sect. 2.4.2), it can provide a biased estimate with low variance that can be used
across multiple pings to resolve the ambiguity.

When an OOI is detected by both waveforms, the techniques presented in Sect. 4 can be applied
to determine how much the CW and FM pulse can benefit from each other when jointly estimating
time delay and radial velocity. In the example presented in Figs. 7 and 8, an up-sweeping LFM
pulse ending at frequency f1 = 1.9 kHz was immediately followed by a CW pulse at fcw = 2kHz.
The LFM started at a frequency f0 = f1 −W where the bandwidth was defined as a function of
ζ =W/fc according to

W =
f1

0.5 + 1/ζ
. [units: Hz] (198)

The two pulses are assumed to have the same duration (Tfm = Tcw = 0.75 s) and SNR (10 log10 Sfm =
10 log10 Scw = 10dB). The onset time of the reference pulse (ttx⋆ ) is assumed to occur in the middle
of the combined FM-CW pair.

The most common manner in which FM-CW waveforms might be employed is through an
incoherent combination, such as using a radial-velocity estimate from the CW to refine estimation
of the time delay from the LFM. The results seen in Fig. 7 illustrate how the bound on time-delay
estimation for incoherent pulses from Sect. 4.3 (blue dashed line) comes close to the bound for the
LFM by itself when Doppler is known (reddish-brown dash-dot line). However, Fig. 8 illustrates
how incoherent use of the LFM pulse (blue dashed line) adds very little to the velocity estimation
potential of the CW pulse by itself (gold line). Coherently combining the two pulses (solid blue
line) provides only minimal improvement to radial-velocity estimation in this example until the
LFM bandwidth is an appreciable fraction of its center frequency.

Where coherent combination of the pulses contributes significantly is when estimating time
delay with LFM pulses that are not overly broadband (i.e., ζ is not too large). As seen in Fig. 7,
combining the LFM and CW coherently tends toward the result achieved by consecutive CW pulses
at 1.9 and 2 kHz (the black circle), which is itself somewhat above that achieved for simultaneous
projection of the CW pulses in a comb waveform from (138). As explained for the comb waveforms,
this occurs because the combined LFM-CW waveform spans the frequency band (fc −W/2, fcw)
and it is the spread that drives performance.

Given the inherent difficulties in coherent and incoherent combination of FM and CW pulses
(e.g., accounting for diverse SNRs and associating detections), the option of projecting a single
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pulse within the PLFM family becomes attractive. For example, consider a PLFM pulse spanning
the total time and bandwidth of the FM-CW combination with a power law of p = 0.2. In Figs.
7 & 8, this PLFM (green dotted lines) is seen to provide better performance than the LFM alone
and reasonable Doppler discrimination. Using [7, eq. 26], the loss in SNR relative to an LFM in
reverberation for this pulse at these frequencies is less than 0.5 dB when ζ ≤ 0.26, which may be a
reasonable compromise.

6 Summary

The focus of this report has been on performance bounds for estimating time delay and radial
velocity in active sensing systems employing multiple frequency-modulated pulses. The bounds were
formed under the assumption that both parameters were unknown and permitted the waveforms
to be broadband. After reviewing existing results for bounds on single pulses and the use of
multiple time-delay measurements to estimate radial velocity, the key multiple-pulse results were
presented for the cases of coherent and incoherent echoes (i.e., when the echoes have, respectively,
common or different bulk phases). Because the multiple-pulse results were presented in terms of the
characteristic time-frequency parameters of the individual pulses and the times of their projection,
they are straightforward to apply to diverse combinations of pulses. A number of examples were
presented confirming existing lore and at times providing a greater understanding of why certain
pulse combinations can provide a significant improvement in performance over their individual-
pulse capabilities. These results should provide a useful tool for evaluating the accuracy with
which time delay (equivalently range) and radial velocity can be estimated when using a particular
set of waveforms in an active sensing system.
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A FIM terms for multiple orthogonal pulses

Suppose that the mth pulse of M has duration Tm [units: s], bandwidth Wm [units: Hz], center
frequency fcm [units: Hz], and is projected with onset time ttxm [units: s]. Let the characteristic
time-frequency parameters of the mth pulse be represented with a subscript m (e.g., f̄m or σ2cm).

From the definitions in Table 2 (pg. 30), recall that tm was the arrival time of themth echo, t⋆ the
arrival time of the echo from the reference pulse, and τ⋆ = t⋆−ttx⋆ was the delay being estimated. To
exploit the waveform definitions and characteristic time-frequency parameters presented in Sect. 2.3,
the arrival time of the center of the mth pulse needs to be defined in terms of the parameters being
estimated (i.e., τ⋆ and η). If the development of (74) is repeated using δ̂m in place of δm, this is
seen to be

t̂m = t⋆ +
δ̂m
η

[units: s], (A1)

where

δ̂m = δm +
Tm
2

[units: s] (A2)

is the delay between transmission of the center of the mth pulse and the onset of the reference
pulse (recall δm = ttxm − ttx⋆ was the delay between the onset times).

The mth echo is then represented by extending (5) to

ũm(t) = Ame
jψm s̊m

(
η[t− t̂m]

)
e−j2πfcmt, (A3)

where the bulk phase (ψm) is initially assumed to be different across the echoes and the analytic
function s̊m(t) is assumed to be centered in time about t = 0 s, as was done in Sect. 2.3. Comparing
(5) and (A3), it is clear that the difference between the analysis presented here and the single-pulse
case is the dependence of t̂m on η that is captured in (A1). As will be seen, this has an impact on
the FIM entries related to η.

Suppose the M pulses are mutually orthogonal so

∞∫
−∞

s̊∗m
(
t− t̂txm

)
s̊n
(
t− t̂txn

)
dt = 0 for m ̸= n. (A4)

This is commonly achieved through diversity in time or frequency, but can also be attained when
the pulses occupy the same time-frequency space. The measured data can then be modeled by
extending (4) to the sum

x̃(t) =

M∑
m=1

ũm(t) + ṽm(t), (A5)

where ṽm(t) is the complex envelope of the noise affecting the mth echo after projection onto the
time-frequency space of the mth signal. For example, when the pulses are projected concurrently
in non-overlapping frequency bands, ṽm(t) can be formed by bandpass filtering to the frequency
band of the mth signal before basebanding. The orthogonality between the pulses implies the noise
in (A5) is uncorrelated from pulse to pulse and therefore independent if it is Gaussian distributed.
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The scaling convention used in [1, Sect. 8.5.3] for frequency-modulated waveforms required the
discrete-time replica to have unit energy (recall footnote 7 (pg. 10)) when sampled at dt = 1/Wm,∑

n

|̊sm(n dt)|2 = 1. (A6)

This in turn yields

∞∫
−∞

|̊sm(t)|2 dt ≈ 1

Wm
(A7)

and

Sd
m =

A2
m

λm
[unitless] (A8)

for the SNR after coherent detection processing of the mth pulse, where λm is the variance of the
complex envelope of the noise, ṽm(t).

The steps described in Sect. 2.2.1 (in particular after (5)) for constructing a vector x repre-
senting the measurements can be extended to this multiple-pulse scenario by simply stacking the
measurements from each pulse, where those that are contemporaneous in time are first projected
onto the time-frequency space of the respective signal. The independence of the noise between
pulses, the assumption of a flat noise power spectral density within the band, and setting the sam-
pling rate for each pulse equal to its bandwidth implies the covariance matrix of x is a diagonal
matrix with each pulse’s entries equal to the variance of its noise (λm).

Assuming the parameters θi and θj only enter the mean of x, as is the case for all of the echo
parameters in the deterministic-signal model, their FIM entry is formed from the first term in (8).
Using the above characterization of the noise covariance matrix for M orthogonal pulses produces
the FIM entry

FIMθi,θj ≈
M∑
m=1

2Wm

λm
Real


∞∫

−∞

∂ũ∗m(t)

∂θi

∂ũm(t)

∂θj
dt

 , (A9)

which is simply the sum over the M individual-pulse FIM entries. After accounting for the depen-
dence of t̂m on η, the multiple-pulse FIM entries can be described in terms of the individual-pulse
characteristic time-frequency parameters. The following sections present the FIM terms for the two
cases of coherency and incoherency between echoes.

A.1 Coherent echoes

When the bulk phase is the same across the pulses (i.e., ψm = ψ is unknown but constant), the
FIM can be described using the single-pulse form found in (27), a total SNR of

Sd
tot =

M∑
m=1

Sd
m [unitless], (A10)

and characteristic time-frequency parameters defined over the multiple pulses, which were presented
in (116)–(120). A brief derivation of these results is presented here.
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Following the single-pulse derivations of the FIM entries for (τ⋆, ψ) and (τ⋆, τ⋆) in [1, Sect. 8.5.3],
it is straightforward to show that (A9) results in a weighted sum over the single-pulse terms for f̄
and Pf . For example, the latter has the form

Pf =
1

Sd
tot

M∑
m=1

Sd
mPfm [units: Hz2]. (A11)

As mentioned above, the terms entailing η must account for how it enters into t̂m, which differs
from the single-pulse scenario. From (A1), it can be seen that

∂t̂m
∂η

=
−δ̂m
η2

[units: s]. (A12)

The derivative of the complex envelope of the mth echo with respect to Doppler scale is then

∂ũm(t)

∂η
=
∂(η[t− t̂m])

∂η

s̊′m
(
η[t− t̂m]

)
s̊m
(
η[t− t̂m]

) ũm(t) (A13)

=

[
t− t̂m +

δ̂m
η

]
s̊′m
(
η[t− t̂m]

)
s̊m
(
η[t− t̂m]

) ũm(t) (A14)

≈ j2π(t− t⋆)fm(t− t̂m)ũm(t), (A15)

where the last line sets η to its nominal value of one and exploits

s̊′m(t)

s̊m(t)
≈ j2πfm(t) (A16)

from [1, pg. 550, eq. 8.278] for frequency-modulated waveforms with slowly varying amplitudes.

Using (A15) with the derivatives with respect to τ⋆ and ψ and exploiting (A7) for waveforms
with a constant envelope, the terms in the FIM can be described using an integral with the form

Gm(k, l) =
Wm

Tmλm

∞∫
−∞

(t− t⋆)
kf lm(t− t̂m)|ũm(t)|2 dt (A17)

=
Sd
m

Tm

Tm/2∫
−Tm/2

(t+ δ̂m)
kf lm(t) dt [units: Hzl−k] (A18)

where k and l are integers taking on values of 0, 1 or 2. For example, (A11) is obtained from

Pf =
1

Sd
tot

M∑
m=1

Gm(0, 2) [units: Hz2]. (A19)

The terms for which k = 1 or 2 produce

c̄ =
1

Sd
tot

M∑
m=1

Gm(1, 1) =
1

Sd
tot

M∑
m=1

Sd
m

(
c̄m + δ̂mf̄m

)
[unitless], (A20)
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Pc =
1

Sd
tot

M∑
m=1

Gm(2, 2) =
1

Sd
tot

M∑
m=1

Sd
m

(
Pcm + 2δ̂mr̄m + δ̂2mPfm

)
[unitless], (A21)

and

r̄ =
1

Sd
tot

M∑
m=1

Gm(1, 2) =
1

Sd
tot

M∑
m=1

Sd
m

(
r̄m + δ̂mPfm

)
[units: Hz], (A22)

which were presented in Sect. 4.2.

A.2 Incoherent echoes

The FIM result found in (121) for pulses having different bulk phase terms is derived in this
section. The M + 2 coupled and unknown parameters for this problem are

θ =[τ⋆ η ψ1 · · ·ψM ]T , (A23)

where ψm is the bulk phase from the mth echo. The matrix in (121) is the two-by-two sub-matrix
formed from the (τ⋆, η) elements of the inverse FIM for θ. This can be obtained by describing the
FIM for θ as comprising a two-by-two block-matrix partition,

FIMθ =

[
A B
C D

]
(A24)

where A is a 2-by-2 matrix, B = CT is 2-by-M , and D is M -by-M . Using the formula for the
inverse of a partitioned matrix found on [43, pg. 535], the 2-by-2 upper-left sub-matrix of the inverse
FIM is

G =
(
A−BD−1C

)−1
. (A25)

The CRLBs for time-delay and velocity estimation are obtained from the diagonal elements of G.

The elements of the FIM for this problem are an extension of those found in (27) to multiple
pulses, similar to the development in App. A.1, but accounting for different phases. Because all of
the pulses contribute to estimating τ⋆ and η in a manner that does not depend on the value of ψm,
the two-by-two sub-matrix A has the same form as that implied by using (117), (119), and (120)
in (27),

A = 8π2
M∑
m=1

Sd
m

[
Pfm −r̄m − δ̂mPfm

−r̄m − δ̂mPfm Pcm + 2δ̂mr̄m + δ̂2mPfm

]
(A26)

where δ̂m = δm + Tm/2 [units: s] represents the difference between the time at which the center
of the mth pulse is transmitted and the onset of the reference pulse. To describe the other sub-
matrices in (A24), it is helpful to define the following vector and matrix terms. Place the SNRs of
the individual pulses (i.e., (Sd

m for m = 1, . . . ,M) in the vector s and use them to form the diagonal
matrix S. Similarly use the delays δ̂m for m = 1, . . . ,M to form the diagonal matrix ∆. Define the
vectors f , pf , c, pc, and r as containing, respectively, f̄m, Pfm , c̄m, Pcm , and r̄m for m = 1, . . . ,M .
This allows describing (A26) as

A = 8π2

[
sTpf −sT (r+∆pf )

−sT (r+∆pf ) sT
(
pc + 2∆r+∆2pf

) ] . (A27)
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The columns of BT or C are formed by separate entries for each bulk phase. This essentially
spreads out the terms seen in the sums in (116) and (118) into the M rows of these matrics,

C = BT = 4π
[
−Sf S(c+∆f)

]
. (A28)

The mth row of C = BT can also be obtained using the integral in (A18),

{C}mth row = 4π[−Gm(0, 1) Gm(1, 1)] . (A29)

Because the pulses are orthogonal and the background is assumed to be Gaussian distributed, the
noise occluding the echo from one pulse can be assumed to be independent of that affecting another.
This causes the dimension-M matrix D to be diagonal, formed from the terms

{D}m,m = 2Gm(0, 0) = 2Sd
m (A30)

for m = 1, . . . ,M . In matrix notation, D = 2S.

Using these matrix-vector notations to construct the FIM for θ results in

FIMθ = 8π2


sTpf −sT (r+∆pf )

−1
2π f

TS

−sT (r+∆pf ) sT
(
pc + 2∆r+∆2pf

)
1
2π (c+∆f)T S

−1
2π Sf

1
2πS(c+∆f) 1

4π2S

 . (A31)

Note that when there is only one pulse, all the terms containing ∆ or ∆2 are zero and (A31)
simplifies to (27). The partitioned-matrix inverse formula yielding (A25) can then be employed to
describe the upper-left 2-by-2 partition of the inverse FIM as

G =
1

8π2

s
Tpf − fTSf −sT (r+∆pf ) + fTSc+ fTS∆f

−sT (r+∆pf ) sT
(
pc + 2∆r+∆2pf

)
− cTSc

+fTSc+ fTS∆f −2fT∆Sc− fT∆S∆f


−1

. (A32)

Collapsing the vector inner products and matrix-vector quadratic and bi-linear forms into sums
results in the simplification,

G =
1

8π2

{
M∑
m=1

Sd
m

[
σ2fm −σfmσcmρm − δ̂mσ

2
fm

−σfmσcmρm − δ̂mσ
2
fm

σ2cm + 2δ̂mρmσfmσcm + δ̂2mσ
2
fm

]}−1

(A33)

as was presented in (121).
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