Vertical Current Shear Retrieval from Shipboard Marine X-band Radar

1Björn Lund, 1Hans C. Graber, 2Clarence O. Collins III, 3Hitoshi Tamura, and 3Sergey Varlamov

1Rosenstiel School of Marine and Atmospheric Science
University of Miami
2Naval Research Laboratory
Stennis Space Center
3Yokohama Institute for Earth Sciences
Japan Agency for Marine-Earth Science and Technology

14 July 2015
Outline

1. Data Overview

2. Radar-based Near-surface Vertical Current Shear Measurement Principles

4. Results from ITOP Field Campaign
Outline

1 Data Overview

2 Radar-based Near-surface Vertical Current Shear Measurement Principles

3 Shipboard Marine Radar Near-surface Current Profiling Methodology

4 Results from ITOP Field Campaign
A science marine radar (MR) system consists of a standard navigation X-band (9.4 GHz) radar that is connected to a PC equipped with a data capture board and analysis software (e.g. WaMoS).

System hardware:

Radar antennas:

R/V Roger Revelle:

Cruise tracks and mooring locations:
Outline

1. Data Overview

2. Radar-based Near-surface Vertical Current Shear Measurement Principles

4. Results from ITOP Field Campaign
Quasi-Eulerian and Wave-induced Current

The radar-based current is a superposition of a quasi-Eulerian (wind drift, tidal, geostrophic, and inertial motions) current \(U_E \) and a wave-induced current \(U_{Sf} \) (Ardhuin et al. 2009):

\[
U_R = U_E + U_{Sf}.
\]

\(U_E \) for deep water linear waves is (Stewart and Joy 1974):

\[
U_E(k_D) = 2k_D \int_0^h U(z) \exp(-2k_D z) dz.
\]

\(U_{Sf} \) is given by:

\[
U_{Sf}(k_D, \theta_D) \simeq U_{SS}(f_D) \cdot e_{\theta_D} + 4\pi k_D \int_{f_D}^{\infty} \int_0^{2\pi} f \cos(\theta - \theta_D) E(f, \theta) d\theta df.
\]

\(U_{SS} \) is the Stokes drift vector for waves with frequencies up to \(f_D \):

\[
U_{SS}(f_D) = 4\pi \int_0^{f_D} \int_0^{2\pi} f k(f) E(f, \theta) df d\theta.
\]
Effective Depth

Depth weighting function for U_E:

U_E represents a weighted-mean of the upper ocean currents.

Linear current profile:
Effective depth is 7.8% of ocean wave length

Logarithmic profile: 4.4%
Outline

1 Data Overview

2 Radar-based Near-surface Vertical Current Shear Measurement Principles

3 Shipboard Marine Radar Near-surface Current Profiling Methodology

4 Results from ITOP Field Campaign
[Wave and] Current Analysis

Processing steps:
- Backscatter ramp correction
- Pulse-by-pulse georeferencing and trilinear interpolation
- Standard near-surface current retrieval
- Heading correction and current “calibration”
- From 3D spectral density to SNR
- Current profiling
Backscatter Ramp Correction

Goal: Reduce backscatter dependency on range and azimuth.

12-min averaged radar image:

Corresponding Fourier-fitted ramp:
Backscatter Ramp Correction

Goal: Reduce backscatter dependency on range and azimuth.

12-min averaged radar image:

After ramp subtraction:
Georeferencing and Trilinear Interpolation

Polar radar images are transformed from ship to geographical coordinates and trilinearly (i.e. in space and time) interpolated.

MR image spiral:

After trilinear interpolation:
Linear dispersion relationship:

\[\omega = \sqrt{gk \tanh kh} + \mathbf{k} \cdot \mathbf{U} \]

- \(\omega \) Angular frequency
- \(g \) Acceleration due to gravity
- \(k \) Wavenumber
- \(h \) Water depth
- \(\mathbf{k} \) Wavenumber vector
- \(\mathbf{U} \) Current vector
Doppler-shifted 3D Dispersion Shell

Wave energy location in 3D wavenumber-frequency space ("dispersion shell"); with current \((\mathbf{U} = \langle -1, 0 \rangle \text{ ms}^{-1})\):

Linear dispersion relationship:

\[\omega = \sqrt{gk \tanh kh} + \mathbf{k} \cdot \mathbf{U} \]

- \(\omega\) Angular frequency
- \(g\) Acceleration due to gravity
- \(k\) Wavenumber
- \(h\) Water depth
- \(k\) Wavenumber vector
- \(\mathbf{U}\) Current vector
Aliasing occurs if a signal is temporally undersampled ($\omega > \omega_{Ny}$). Higher harmonics appear mainly due to nonlinearities in the imaging mechanism (Senet et al. 2001).

Dispersion relationship with higher harmonics:

$$S_{p}^{\pm} = \pm (p + 1) \sqrt{\frac{gk}{p+1}} \tanh \left(\frac{k_{h}}{p+1} \right) + k \cdot U$$

Aliasing symmetry conditions:

$$P(k_{x}, k_{y}, \omega) = P(k_{x}, k_{y}, \omega + n\omega_{Ny})$$
$$P(k_{x}, k_{y}, \omega) = P(-k_{x}, -k_{y}, -\omega)$$

S Angular frequency
p Integer for harmonic order
P 3D image power spectrum
n Integer for frequency intervals
Spectral Signal of Near-surface Current

Current fit minimizes distance of 3D dispersion shell from wave signal (Young et al. 1985; Senet et al. 2001).

Frequency slice through 3D spectrum (1.12 rad$^{-1}$):

Wavenumber-frequency slice from 3D spectrum ($k_x = 0$ rad m$^{-1}$ and 0 rad m$^{-1} \leq k_y \leq k_{Ny}$):

Graph 1:
- Still water
- $U = (0.12, 0.52)$ ms$^{-1}$
- Fundamental mode
- First harmonic
- Second harmonic

Graph 2:
- Still water
- $v = 0.52$ ms$^{-1}$
- Fundamental mode
- First harmonic
- Second harmonic
- Group line
Shipboard current measurements require accurate heading data. Errors induce a spurious cross-track current: \(U_\perp = U_s \sin \theta_e \) (Pollard and Read 1989).

In geographic coordinates:

In ship coordinates:
Solution: (1) Correct gyro heading using multi-antenna GPS (King and Cooper 1993), and (2) perform water-track “calibration” to determine (constant) radar–compass misalignment angle (Joyce 1989).

Ship maneuver offering calibration opportunity:

Alignment error: \[\tan \alpha = \frac{\langle \delta u'_d \delta v_s - \delta v'_d \delta u_s \rangle}{\langle \delta u'_d \delta u_s + \delta v'_d \delta v_s \rangle} \]

<table>
<thead>
<tr>
<th>(u_s)</th>
<th>(v_s)</th>
<th>(\delta u_s)</th>
<th>(\delta v_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.164</td>
<td>-4.354</td>
<td>-0.089</td>
<td>-2.181</td>
</tr>
<tr>
<td>0.015</td>
<td>0.008</td>
<td>0.089</td>
<td>2.181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(u'_d)</th>
<th>(v'_d)</th>
<th>(\delta u'_d)</th>
<th>(\delta v'_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.135</td>
<td>3.662</td>
<td>-0.001</td>
<td>2.13</td>
</tr>
<tr>
<td>-0.133</td>
<td>-0.597</td>
<td>0.001</td>
<td>-2.13</td>
</tr>
</tbody>
</table>
Background noise as $f(k, \omega)$ is estimated from spectral half with lowest standard deviation of spectral density over k.

(a)

(b)

(c)

(d)
Goal: Identify wave signal over broad range of directions and wavenumbers.

Power thresholding:

SNR thresholding:
Outline

1. Data Overview

2. Radar-based Near-surface Vertical Current Shear Measurement Principles

4. Results from ITOP Field Campaign
Time series of MR (0.225 radm$^{-1}$ or ~2 m) and ADCP (21 m) currents.
Shipboard Marine Radar versus ADCP Currents II

Scatter plots and statistics for MR–ADCP comparison.

Current speed:

- N = 2391
- r = 0.93
- Bias = 0.01 ms$^{-1}$
- RMS = 0.08 ms$^{-1}$
- $\sigma_{xy} = 0.07$ ms$^{-1}$

Current direction:

- N = 2391
- R = 0.91
- Bias = 0.65°
- RMS = 28.08°
- $\sigma_{xy} = 28.07°$
Example of MR near-surface vertical current shear measurements with WW3-based filtered Stokes drift.
Near-surface Current Profile Examples II

“Parallel flow” and “clockwise forcing”.

REV, 10/22/2010, 04:33:00.4-04:45:11.8 UTC

REV, 10/18/2010, 05:19:03.2-05:31:23.7 UTC
Near-surface Current Profile Examples III

“Counter flow” and “counter-clockwise forcing”.

REV, 08/08/2010, 12:26:34.7-12:38:46.1 UTC

H_s = 2.65 m
U_{ADCP} = 0.58 ms^{-1}
U_{wind} = 12.6 ms^{-1}

H_s = 5.94 m
U_{ADCP} = 0.31 ms^{-1}
U_{wind} = 13.4 ms^{-1}
Near-surface Current Profile Examples IV

“Parallel flow” transitioning f/ “counter-” to “clockwise forcing”; flow reversal.

REV, 08/07/2010, 23:19:34.3-23:31:46.0 UTC
Time series of differences between MR (0.11 rad m⁻¹ or ~4.5 m) and ADCP (21 m) currents.
Choice of Background Current Depth II

Time series of differences between MR (0.11 radm$^{-1}$ or ~4.5 m) and ADCP (101 m) currents.
Stokes and Ekman Drift

Mean background-current-corrected MR profiles.

- Stokes drift
- Radar
- Radar–Stokes drift

Depth [m]

Deflection angle [°]

Speed factor

0.004 0.006 0.008 0.010 0.012 0.014 0.016

-80 -60 -40 -20 0
Conclusions & Outlook

- Compared MR near-surface currents with ADCP reference measurements
- MR currents are in good agreement with reference
- Presented first MR near-surface current profiles
- Near-surface current profiles’ response to wind and wave forcing agrees with our physical expectations (flow to the right of the wind, speed decays, deflection angle increases with depth)

Future work / outlook:

- Determine exact effective depths of near-surface current profiling results through numerical inversion of $U_E(k_D)$
- Validate MR near-surface current profiles, e.g. using drifters
- Apply methodology to further MR data sets to study Stokes drift and Ekman dynamics
Acknowledgment

This work has been supported by the Center for Southeastern Tropical Advanced Remote Sensing (CSTARS) of the University of Miami and the U.S. Office of Naval Research (ONR) under grant N000141310288.

References:

Spectral Sensitivity to Currents

Technique’s sensitivity, in terms of wavenumber resolution cells:
Spectral Sensitivity to Bathymetry

Sensitivity to bathymetry:
Mean deviations of MR currents from 5th degree polynomial fit:
Mean SNR across dispersion curve

Mean SNR along lines covering a range of radial distances from the dispersion curve, for different frequencies:

Mean signal-to-noise ratio

Angular frequency [rads⁻¹]

Distance from dispersion curve [waven. res. cells]
Marine Radar Current Shear Measurements

Current shear fit example:

Frequency = 1.729 rads$^{-1}$

Mean signal-to-noise ratios:

- With shear
- Without shear

Wavenumber cells perpendicular from dispersion curve

Mean signal-to-noise ratio
Anemometer winds, sub-surface currents, filtered Stokes drift, and peak wave parameters.
Conventional mechanical gyro compasses are reliable but have errors of $O(1^\circ)$ depending on ship speed, heading, and latitude (Bowditch 2002).

Difference between ASHTECH multi-antenna GPS and gyro compass:

Gyro compass error dependency on heading:
ITOP Experiment

Air-Sea Interaction Spar (ASIS) buoy (Graber et al. 2000):

- CO2 and H2O vapor
- Wind speed and direction
- Marine aerosol
- Air temperature, relative humidity
- Beacon
- Wave wires

Extreme Air-Sea Interaction (EASI) buoy (Drennan et al. 2014):

- Wind speed and direction
- CO2 and H2O (closed and open path)
- Marine aerosol
- Air temperature, relative humidity
- Solar radiation

R/V Roger Revelle with ASIS-EASI buoy pair:

Photo credit: Hans C. Graber
ASIS / EASI graph credit: Henry Potter
Wind-driven currents are heavily affected by stratification (Price et al. 1987; Price and Sundermeyer 1999).

During RR1010 near EASI-N:
20.63°N, 127.43°E; 08/05/2010, 13:12:15 UTC

During RR1015 near EASI-S:

EASI-S–WW3:

- Scatter plot
- Parameters:
 - $N = 2641$
 - $r = 0.91$
 - Bias = -0.03 ms$^{-1}$
 - RMS = 0.04 ms$^{-1}$
 - $\sigma_{xy} = 0.03$ ms$^{-1}$

EASI-N–WW3:

- Scatter plot
- Parameters:
 - $N = 2809$
 - $r = 0.91$
 - Bias = -0.04 ms$^{-1}$
 - RMS = 0.05 ms$^{-1}$
 - $\sigma_{xy} = 0.03$ ms$^{-1}$
WAVEWATCH III peak wave parameters, 12 August 2010, 12:00 UTC.

Significant wave height, currents (black arrows) and winds (white):

Peak wave period and direction:
JCOPE-T ocean model – a regional tides resolving version of POM (Miyazawa 2012) – output for vertical (color code) and horizontal current (arrows) at 2 m, 12 August 2010, 12:00 UTC.
Time series of ADV (4 m) and ADCP (21.22 m) measurements:
Scatter plots and statistics for ADV–ADCP comparison.

Current speed:
- **ADV current speed** [ms$^{-1}$]
- **ADCP current speed** [ms$^{-1}$]
- $N = 2104$
- $r = 0.96$
- Bias = -0.02 ms$^{-1}$
- RMS = 0.07 ms$^{-1}$
- $\sigma_{xy} = 0.07$ ms$^{-1}$

Current direction:
- **ADV current direction** [°]
- **ADCP current direction** [°]
- $N = 2104$
- $R = 0.85$
- Bias = -15.33°
- RMS = 41.13°
- $\sigma_{xy} = 38.16$°
Spectral Analysis of ASIS-S ADV Data

Rotary ADV spectra (Gonella 1972); the inertial period is 35.54 h: