Modeling the Oceanic Surface Saturation of CFC-11, CFC-12, and SF6
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Motivation: Why is saturation important? Model Description

Modeled Winter Mixed Layer Depth

Tracer Atmospherlc Hlstory

CFCs, SF6 as tracers of circulation — Hallberg Isopycnal Model

e Known atmospheric mixing ratio history [—oen ) e Global, ocean-only, isopycnal coordinate model
e Sole oceanic source: air-sea gas exchange 6 e 49 layers (4 in mixed layer)

e Inert in the oceanic interior e 210 X 360 cells on horizontal grid

e Present in measurable concentrations e Spunup for 550 years

e Model's surface dynamics match observations

- S reasonably well
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e Infer Green's function for oceanic transport operator G (z,¢) » N_ e Tracer advection/diffusion model e Solubilities F from empirical studies™

. . . . 2
e Can estimate mean ventilation ages and anthropogenic carbon e Mass transports, T, S from e Piston velocity k,, parameterized as
. . . . T/ = ’ § ’ ' . . ' .
e Oceanic interior concentrations can be measured accurately CZ(z,¢ physical model quadratic function of model’s wind

e Disequilibrium in boundary condition can cause errors C° (Z,1) - e Tracer uptake modeled as 1D speed scaled by Schmidt number’

" air-sea gas exchange e Global average scaled to 15.7 cm/hr
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Application: Transit Time Distributions’
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Result: Temporal variability Result: Spatial variability
e Disequilibrium decreases with time CFC—12: 1980 Winter Saturation
e \Waters saturated during summer months X 100
e Differences between tracers associated
with solubility and atmospheric growth curve
e Present day CFC undersaturations persist 95 _
despite decrease in atmospheric concentrations 0
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m e LT L L R R LA e Undersaturation occurs in every ocean basin e Degree of undersaturation greater than
SRR e Occurs in regions of deep mixed layers, seasonal measurement uncertainty
S I | 1L U S cooling and strong upwelling e Can cause significant bias in ventilation time scales
| ‘ if not considered
. e Result: Sensitivity of saturation to physical processes
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e Intrannual variability from seasonality of
temperature, salinity, piston velocity, and mixed
layer depth

e Month of greatest undersaturation (dashed line
above) dependent on gradient in temperature and
mixed layer depth.

| 90

CFC-11 1980 Percent Saturation

85

Undersaturation sensitivity (North Pacific)

) e Piston velocities k,, control magnitude of undersaturation (B, C)
) ky scaled to 15.9 cm/hr, annual mean e In areas of deep mixed layers and strong cooling, higher wind

) Ky scaled to 21.7 cm/hr, annual mean’ speeds drive waters closer to saturation in winter (A, B)

) No seasonal cycle in T/S e Seasonal variability and mixed layer entrainment are the dominant
)

)

No conc. difference in entrained waters causes of saturation (D, E, F)

Both (d) and (e)
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e Oceanic ventilation sites with deep winter mixed layers e Quantify the effect of an undersaturated boundary
tend to be undersaturated on estimated ventilation ages and anthropogenic CO;
e Seasonal cycle and entrainment control undersaturation
(about equal contribution in North Pacific)
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