UROLOGY

Fragmentation of kidney stones *in vitro* by focused ultrasound bursts without shock waves

Adam Maxwell, Bryan Cunitz, Wayne Kreider, Oleg Sapozhnikov, Ryan Hsi, Mathew Sorensen, Jonathan Harper, and Michael Bailey

Department of Urology

&

Center for Industrial and Medical Ultrasound, Applied Physics Laboratory University of Washington

December 5, 2013

Shock Wave Lithotripsy

 Stone-free rates for shock wave lithotripsy (SWL) have not improved with newer-generation machines¹.

- Variations of shock wave output:
 - Focal width
 - Shock amplitude
 - Method of shock generation

 More invasive techniques such as ureteroscopy² are gaining clinical preference

¹Lingeman JE. J Urol 2004;172:1774. ²Matlaga, BR J Urol 2009;**181**:152-2156.

SWL Mechanisms

- Previous studies identified mechanisms of stone fracture^{1,2}:
 - Dynamic Squeezing/Shear
 - Cavitation

Cavitation is a primary cause of tissue injury.

Sapozhnikov et al 2007

¹Sapozhnikov et al. J Acoust Soc Am 2007:121;1190-1202 ²Zhu et al. Ultrasound Med Biol 2002;28:661-671

Objective

- **Hypothesis:** Fracture of stones can be effectively achieved by \bullet applying ultrasound bursts *without* shock waves:
 - Broadly focused ultrasound bursts
 - Sinusoidal ring-down instead of negative tail to minimize cavitation •

SWL Shock Wave

Experiment: Determine the exposures needed to fragment stones with burst waves in vitro.

Experiment

Cylinder Begostone Model¹: Similar acoustic properties to COM

- Tensile Strength: ~3.5 MPa
- . COM Tensile Strength: 3.1 5.2 MPa

Natural Stones:

- 5-10 mm uric acid, struvite, calcium oxalate monohydrate (COM), and cystine
- Submerged in water \geq 1 week

¹Liu Y and Zhong P. J Acoust Soc Am 2002:112;1265

Experiment

Ultrasound System:

- 170-kHz focused US transducer
- 8.4 cm aperture
- -6 dB beamwidth: 31 x 8 mm
- High voltage RF amplifier

170 kHz Transducer

Focal Pressure Waveform

Acoustic Output:

- Focal pressure ampl. ≤ 6.5 MPa
- PRF: 200 Hz
- Burst Length: 10 cycles

Experiment

RF Amplifier

Artificial Stones

- Stones fracture and fragments separate from stone surface proximal to the transducer.
- Time to comminution at f = 170 kHz, $p_a = 6.5$ MPa: 9.7 ± 2.8 minutes (n=12)

Artificial Stones

Pressure amplitude to initiate fracture at 170 kHz in 5 minutes: $p_a \ge 2.8$ MPa

Natural Stones

Stone comminution achieved in all natural stone types treated at f = 170 kHz, $p_a = 6.5$ MPa

Natural Stones

Comminution time varied dramatically with stone composition:
 4 sec - 21 min (n=3 each type)

Struvite Stone

Cystine Stone

Natural Stones

- Comminution time varied dramatically with stone composition:
 4 sec 21 min (n=3 each type)
- Estimated comminution rate: mean 12 ~ 520 mm³/min

• Stone fragments photographed / sieved to obtain size distribution

Sieved fragment distribution

• Stone fragments photographed / sieved to obtain size distribution

Maximum Fragment Size

- Artificial stones treated at different ultrasound frequencies
 - *p_a* = 6.5 MPa
 - Focal width ≥ Stone width

Maximum fragment size $\propto f^{-1}$

Conclusions

- Focused ultrasound bursts without shock waves can fragment natural and artificial calculi.
- Comminution can be achieved over time frame similar to SWL and possibly faster for certain stone types.
- Fragment sizes are consistent and may be controlled by selection of ultrasound frequency.

Acknowledgments

- Jim McAteer and Jim Williams at IUPUI for providing stones
- NIH T32 DK007779-11A1 Multidisciplinary Training Program in Benign Urology
- NIH R01 EB007643, P01 DK043881, R01 DK092197, NSBRI NASA NCC 9-58