|
Clocking Greenland's Glaciers
Ice-Sheet-Wide Velocity Mapping
|
|
|
|
|
Glaciology has traditionally been a data-limited science.
To really say waht the ice sheet is doing, you have to watch glaciers continuously. You have to se what it's doing year by year and month by month to get the picture for each glacier.
|
More About This Research
|
|
|
Future sea-level rise from Greenland's main outlet glaciers in a warming climate Nick, F.M., et al., including I. Joughin, "Future sea-level rise from Greenland's main outlet glaciers in a warming climate," Nature, 497, 235-238, doi:10.1038/nature12068, 2013. |
|
More Info
| |
|
8 May 2013
|
|
|
|
|
Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge to the ocean. The latter is controlled by the acceleration of ice flow and subsequent thinning of fast-flowing marine-terminating outlet glaciers. Quantifying the future dynamic contribution of such glaciers to sea-level rise (SLR) remains a major challenge because outlet glacier dynamics are poorly understood. Here we present a glacier flow model that includes a fully dynamic treatment of marine termini. We use this model to simulate behaviour of four major marine-terminating outlet glaciers, which collectively drain about 22 per cent of the Greenland Ice Sheet. Using atmospheric and oceanic forcing from a mid-range future warming scenario that predicts warming by 2.8 degrees Celsius by 2100, we project a contribution of 19 to 30 millimetres to SLR from these glaciers by 2200. This contribution is largely (80 per cent) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. After initial increases, however, dynamic losses from these four outlets remain relatively constant and contribute to SLR individually at rates of about 0.01 to 0.06 millimetres per year. These rates correspond to ice fluxes that are less than twice those of the late 1990s, well below previous upper bounds. For a more extreme future warming scenario (warming by 4.5 degrees Celsius by 2100), the projected losses increase by more than 50 per cent, producing a cumulative SLR of 29 to 49 millimetres by 2200.
|
|
|
|
Recurring dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm, West Greenland Khan, S.A., et al., including I. Joughin, "Recurring dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm, West Greenland," J. Geophys. Res., 118, 111-121, doi:10.1029/2012JF002481, 2013. |
|
More Info
| |
|
1 Mar 2013
|
|
|
|
|
Many glaciers along the southeast and northwest coasts of Greenland have accelerated, increasing the ice sheet's contribution to global sea-level rise. In this article, we map elevation changes on Upernavik Isstrøm (UI), West Greenland, during 2003 to 2009 using high-resolution ice, cloud and land elevation satellite laser altimeter data supplemented with altimeter surveys from NASA's Airborne Topographic Mapper during 2002 to 2010. To assess thinning prior to 2002, we analyze aerial photographs from 1985. We document at least two distinct periods of dynamically induced ice loss during 1985 to 2010 characterized by a rapid retreat of the calving front, increased ice speed, and lowering of the ice surface. The first period occurred before 1991, whereas the latter occurred during 2005 to 2009. Analyses of air and sea-surface temperature suggest a combination of relatively warm air and ocean water as a potential trigger for the dynamically induced ice loss. We estimate a total catchment-wide ice-mass loss of UI caused by the two events of 72.3 ± 15.8 Gt during 1985 to 2010, whereas the total melt-induced ice-mass loss during this same period is 19.8 ± 2.8 Gt. Thus, 79% of the total ice-mass loss of the UI catchment was caused by ice dynamics, indicating the importance of including dynamically induced ice loss in the total mass change budget of the Greenland ice sheet.
|
|
|
|
A reconciled estimate of ice-sheet mass balance Shepherd, A., and 46 others, including I. Joughin and B. Smith, "A reconciled estimate of ice-sheet mass balance," Science, 338, 1183-1189, doi:10.1126/science.1228102, 2012. |
|
More Info
| |
|
30 Nov 2012
|
|
|
|
|
We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methodsespecially in Greenland and West Antarcticaand that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by 142 ± 49, +14 ± 43, 65 ± 26, and 20 ± 14 gigatonnes year-1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year-1 to the rate of global sea-level rise.
|
|
|
|
Ice-sheet response to oceanic forcing Joughin, I., R.B. Alley, and D.M. Holland, "Ice-sheet response to oceanic forcing," Science, 338, 1172-1176, doi:10.1126/science.1226481, 2012. |
|
More Info
| |
|
30 Nov 2012
|
|
|
|
|
The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.
|
|
|
|
Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis Joughin, I., B.E. Smith, I.M. Howat, D. Floriciolu, R.B. Alley, M. Truffer, and M. Fahnestock, "Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis," J. Geophys. Res., 117, doi:10.1029/2011JF002110, 2012. |
|
More Info
| |
|
25 May 2012
|
|
|
|
|
Using new data, we build upon the nearly two-decade long record of observations from Jakobshavn Isbrae to investigate the processes driving its dynamic evolution. While winter flow speed has not increased substantially over the last three winters, there remains a strong seasonal variation in flow speed that coincides with a cycle of summer thinning and winter thickening. We relate changes in glacier speed to geometry through variations in basal traction and horizontal stresses, using ice-flow models constrained by satellite and airborne observations. These results suggest that the bed provides little flow resistance along the main trough within about 20 km of the terminus. While the loss of buttressing from the retreat of grounded and floating ice likely contributed to the initial speedup, other processes are of comparable significance at seasonal to decadal time scales. From analysis of the models, we hypothesize that thinning-induced change in basal effective pressure is the dominant process influencing near-terminus behavior, while diffusive processes drive the upstream response. The apparent need for the terminus to thin to near flotation before it can calve may limit the rate at which retreat occurs. Our analysis of the processes controlling the speed suggests little potential for further large acceleration. Thinning and elevated speeds may continue at rates similar to present, however, putting the glacier on course to retreat to the head of its deep trough in about a century, at which point it likely would stabilize with a thinner terminus.
|
|
|
|
21st-century evolution of Greenland outlet glacier velocities Moon, T., I. Joughin, B. Smith, and I. Howat, "21st-century evolution of Greenland outlet glacier velocities," Science, 336, 576-578, doi:10.1126/science.1219985, 2012. |
|
More Info
| |
|
4 May 2012
|
|
|
|
|
Earlier observations on several of Greenland%u2019s outlet glaciers, starting near the turn of the 21st century, indicated rapid (annual-scale) and large (>100%) increases in glacier velocity. Combining data from several satellites, we produce a decade-long (2000 to 2010) record documenting the ongoing velocity evolution of nearly all (200 ) of Greenland%u2019s major outlet glaciers, revealing complex spatial and temporal patterns. Changes on fast-flow marine-terminating glaciers contrast with steady velocities on ice-shelf%u2013terminating glaciers and slow speeds on land-terminating glaciers. Regionally, glaciers in the northwest accelerated steadily, with more variability in the southeast and relatively steady flow elsewhere. Intraregional variability shows a complex response to regional and local forcing. Observed acceleration indicates that sea level rise from Greenland may fall well below proposed upper bounds.
|
|
|
|
Constraining ice mass loss from Jakobshavn Isbrae (Greenland) using InSAR-measured crustal uplift Liu, L., J. Wahr, I. Howat, S.A. Khan, I. Joughin, and M. Furuya, "Constraining ice mass loss from Jakobshavn Isbrae (Greenland) using InSAR-measured crustal uplift," Geophys. J. Int., 188, 994-1006, doi:10.1111/j.1365-246X.2011.05317.x, 2012. |
|
More Info
| |
|
1 Mar 2012
|
|
|
|
|
Jakobshavn Isbrae in west Greenland has been undergoing dramatic thinning since 1997. Applying the interferometric synthetic aperture radar (InSAR) technique to Radarsat-1 SAR data, we measure crustal uplift near Jakobshavn Isbrae caused by recent ice mass loss. The crustal uplift is predominantly at long spatial wavelengths (larger than 10 km), and thus is difficult to separate from InSAR orbit errors. We reduce the effects of orbit errors by removing long-wavelength deformation signals using conventional InSAR baseline fitting methods. We find good agreement between the remaining short-scale InSAR-estimated deformation rates during 20042008 and the corresponding short-scale components of a deformation model that is based on changes in ice elevation measured by NASA's Airborne Topographic Mapper (ATM). We are also able to use the InSAR-measured deformation to invert for the spatial pattern of ice thinning. Overall, our results suggest that despite the inherent difficulties of working with a signal that has significant large-scale components, InSAR-measured crustal deformation can be used to study the ice mass loss of a rapidly thinning glacier and its surrounding catchment, providing both a constraint on any existing model of ice mass loss and a data source that can be used to invert for ice mass loss. These new applications of InSAR can help to better understand a glacier's rapid response to a warming climate.
|
|
|
|
Warming of waters in an East Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmospheric conditions Christoffersen, P., R.I. Mugford, K.J. Heywood, I. Joughin, J.A. Dowdeswell, J.P.M. Syvitski, A. Luckman, and T.J. Benham, "Warming of waters in an East Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmospheric conditions," Cryosphere Discuss., 5, 1335-1364, doi:10.5194/tcd-5-1335-2011, 2011. |
|
More Info
| |
|
9 Sep 2011
|
|
|
|
|
Hydrographic data acquired in Kangerlugssuaq Fjord and adjacent seas in 1993 and 2004 are used together with ocean reanalysis to elucidate water mass change and ice-ocean-atmosphere interactions in East Greenland. The hydrographic data show substantial warming of fjord waters between 1993 and 2004 and warm subsurface conditions coincide with the rapid retreat of Kangerlugssuaq Glacier in 2004-2005. The ocean reanalysis shows that the warm properties of fjord waters in 2004 are related to a major peak in oceanic shoreward heat flux into a cross-shelf trough on the outer continental shelf. The heat flux into this trough varies according to seasonal exchanges with the atmosphere as well as from deep seasonal intrusions of subtropical waters. Both mechanisms contribute to high (low) shoreward heat flux when winds from the northeast are weak (strong). The combined effect of surface heating and inflow of subtropical waters is seen in the hydrographic data, which were collected after periods when along-shore coastal winds from the north were strong (1993) and weak (2004). We show that coastal winds vary according to the pressure gradient defined by a semi-permanent atmospheric pressure system over Greenland and a persistent atmospheric low situated near Iceland. The magnitude of this pressure gradient is controlled by longitudinal variability in the position of the Icelandic Low.
|
|
|
|
Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology Sole, A.J., D.W.F. Mair, P.W. Nienow, I.D. Bartholomew, M.A. King, M.J. Burke, and I. Joughin, "Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology," J. Geophys. Res., 116, doi: 10.1029/2010JF001948, 2011. |
|
More Info
| |
|
23 Aug 2011
|
|
|
|
|
We present subdaily ice flow measurements at four GPS sites between 36 and 72 km from the margin of a marine-terminating Greenland outlet glacier spanning the 2009 melt season. Our data show that >35 km from the margin, seasonal and shorter-time scale ice flow variations are controlled by surface melt-induced changes in subglacial hydrology. Following the onset of melting at each site, ice motion increased above background for up to 2 months with resultant up-glacier migration of both the onset and peak of acceleration. Later in our survey, ice flow at all sites decreased to below background. Multiple 1 to 15 day speedups increased ice motion by up to 40% above background. These events were typically accompanied by uplift and coincided with enhanced surface melt or lake drainage. Our results indicate that the subglacial drainage system evolved through the season with efficient drainage extending to at least 48 km inland during the melt season. While we can explain our observations with reference to evolution of the glacier drainage system, the net effect of the summer speed variations on annual motion is small (~1%). This, in part, is because the speedups are compensated for by slowdowns beneath background associated with the establishment of an efficient subglacial drainage system. In addition, the speedups are less pronounced in comparison to land-terminating systems. Our results reveal similarities between the inland ice flow response of Greenland marine- and land-terminating outlet glaciers.
|
|
|
|
Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000-2009) McFadden, E.M., I.M. Howat, I. Joughin, B.E. Smith, and Y. Ahn, "Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000-2009)," J. Geophys. Res., 116, doi:10.1029/2010F001757, 2011. |
|
More Info
| |
|
23 Jun 2011
|
|
|
|
|
Recent changes in the dynamics of Greenland's marine terminating outlet glaciers indicate a rapid and complex response to external forcing. Despite observed ice front retreat and recent geophysical evidence for accelerated mass loss along Greenland's northwestern margin, it is unclear whether west Greenland glaciers have undergone the synchronous speed-up and subsequent slow-down as observed in southeastern glaciers earlier in the decade. To investigate changes in west Greenland outlet glacier dynamics and the potential controls behind their behavior, we derive time series of front position, surface elevation, and surface slope for 59 marine terminating outlet glaciers and surface speeds for select glaciers in west Greenland from 2000 to 2009. Using these data, we look for relationships between retreat, thinning, acceleration, and geometric parameters to determine the first-order controls on glacier behavior. Our data indicate that changes in front positions and surface elevations were asynchronous on annual time scales, though nearly all glaciers retreated and thinned over the decade. We found no direct relationship between retreat, acceleration, and external forcing applicable to the entire region. In regard to geometry, we found that, following retreat, (1) glaciers with grounded termini experienced more pronounced changes in dynamics than those with floating termini and (2) thinning rates declined more quickly for glaciers with steeper slopes. Overall, glacier geometry should influence outlet glacier dynamics via stress redistribution following perturbations at the front, but our data indicate that the relative importance of geometry as a control of glacier behavior is highly variable throughout west Greenland.
|
|
|
|
Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water Palmer, S., A. Shepherd, P. Nienow, and I. Joughin, "Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water," Earth Planet. Sci. Lett., 302, 423-428, doi:10.1016/j.epsl.2010.12.037, 2011. |
|
More Info
| |
|
1 Feb 2011
|
|
|
|
|
We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.
|
|
|
|
GPS measurements of crustal uplift near Jakobshavn Isbrae due to glacial ice mass loss Khan, S.A., L. Liu, J. Wahr, I. Howat, I. Joughin, T. van Dam, and K. Fleming, "GPS measurements of crustal uplift near Jakobshavn Isbrae due to glacial ice mass loss," J. Geophys. Res., 115, doi:10.1029/2010JB007490, 2010. |
|
More Info
| |
|
16 Sep 2010
|
|
|
|
|
We analyze 20062009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm yr-1 larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass.
Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 plus/minus 1.7 mm yr-1 and 4.9 plus/minus 1.1 mm yr-1, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 plus/minus 2 km3 yr-1 between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 plus/minus 0.9 mm yr-1 and 3.2 x 0.3 mm yr-1, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.
|
|
|
|
Greenland flow variability from ice-sheet-wide velocity mapping Joughin, I., B.E. Smith, I.M. Howat, T. Scambos, and T. Moon, "Greenland flow variability from ice-sheet-wide velocity mapping," J. Glaciol., 56, 415-430, doi:10.3189/002214310792447734, 2010. |
|
More Info
| |
|
1 Aug 2010
|
|
|
|
|
Using RADARSAT synthetic aperture radar data, we have mapped the flow velocity over much of the Greenland ice sheet for the winters of 2000/01 and 2005/06. These maps provide a detailed view of the ice-sheet flow, including that of the hundreds of glaciers draining the interior. The focused patterns of flow at the coast suggest a strong influence of bedrock topography. Differences between our two maps confirm numerous early observations of accelerated outlet glacier flow as well as revealing previously unrecognized changes. The overall pattern is one of speed-up accompanied by terminus retreat, but there are also several instances of surge behavior and a few cases of glacier slowdown. Comprehensive mappings such as these, at regular intervals, provide an important new observational capability for understanding ice-sheet variability.
|
|
|
|
Data sheds light on speed of Greenland's glaciers BBC News, Mark Kinver Greenland's glaciers are not speeding up as much as previously thought, researchers have estimated. A team of US researchers based their findings on data stretching back to 2000-2001, collected from more than 200 outlet glaciers. "So far, on average, we are seeing about a 30% speed-up in 10 years," observed lead author Twila Moon. |
|
4 May 2012
|
|
|
|
|
Greenland ice melt could raise seas less than feared, study says CNN, Matt Smith Greenland's glaciers are sliding into oceans at a faster pace than previously known, but they may contribute less to an expected rise in global sea level than feared, scientists reported Thursday. |
|
4 May 2012
|
|
|
|
|
Greenland glaciers shrinking quickly, but not worst case The Washington Post (Associated Press) Greenland's glaciers are hemorrhaging ice at an increasingly faster rate but not at the breakneck pace that scientists once feared, a new study says. |
|
3 May 2012
|
|
|
|
|
Greenland's ice melting more slowly than expected NPR 'All Things Considered', RIchard Harris The flow of Greenland glaciers to the sea has increased by 30 percent over the past decade. But Polar Science Center researchers report in Science that they aren't seeing a runaway meltdown of Greenland that some have feared. |
|
3 May 2012
|
|
|
|
|
Increasing speed of Greenland glaciers gives new insight for rising sea level UW Today, Vince Stricherz Changes in the speed that ice travels in more than 200 outlet glaciers indicates that Greenland's contribution to rising sea level in the 21st century might be significantly less than the upper limits some scientists thought possible, a new study shows. |
|
3 May 2012
|
|
|
|
|
Sea-level rise 'may not be as high as worst-case scenarios have predicted' The Guardian, Damian Carrington New research published in Science suggests that Greenland's glaciers are slipping into the sea more slowly than was previously thought. But scientists warn that ice loss still sped up by 30% and is driving rises in sea levels that endanger low-lying coasts around the world. |
|
3 May 2012
|
|
|
|
|