APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Melinda Webster

Affiliate - Directory Only

Email

melindaw@apl.washington.edu

Department Affiliation

Polar Science Center

Publications

2000-present and while at APL-UW

The influence of snow on sea ice as assessed from simulations of CESM2

Holland, M.M., D. Clemens-Sewall, L. Landrum, B. Light, D. Perovich, C. Polashenski, M. Smith, and M. Webster, "The influence of snow on sea ice as assessed from simulations of CESM2," Cryosphere, 15, 4981-4998, doi:10.5194/tc-15-4981-2021, 2021.

More Info

28 Oct 2021

We assess the influence of snow on sea ice in experiments using the Community Earth System Model version 2 for a preindustrial and a 2xCO2 climate state. In the preindustrial climate, we find that increasing simulated snow accumulation on sea ice results in thicker sea ice and a cooler climate in both hemispheres. The sea ice mass budget response differs fundamentally between the two hemispheres. In the Arctic, increasing snow results in a decrease in both congelation sea ice growth and surface sea ice melt due to the snow's impact on conductive heat transfer and albedo, respectively. These factors dominate in regions of perennial ice but have a smaller influence in seasonal ice areas. Overall, the mass budget changes lead to a reduced amplitude in the annual cycle of ice thickness. In the Antarctic, with increasing snow, ice growth increases due to snow–ice formation and is balanced by larger basal ice melt, which primarily occurs in regions of seasonal ice. In a warmer 2xCO2 climate, the Arctic sea ice sensitivity to snow depth is small and reduced relative to that of the preindustrial climate. In contrast, in the Antarctic, the sensitivity to snow on sea ice in the 2xCO2 climate is qualitatively similar to the sensitivity in the preindustrial climate. These results underscore the importance of accurately representing snow accumulation on sea ice in coupled Earth system models due to its impact on a number of competing processes and feedbacks that affect the melt and growth of sea ice.

Optical properties of melting first-year Arctic sea ice

Light, B., D.K. Perovich, M.A. Webster, C. Polashenski, and R. Dadic, "Optical properties of melting first-year Arctic sea ice," J. Geophys. Res., 120, 7657-7675, doi:10.1002/2015JC011163, 2015.

More Info

1 Nov 2015

The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

Seasonal evolution of melt ponds on Arctic sea ice

Webster, M.A., I.G. Rigor, D.K. Perovich, J.A. Richter-Menge, C.M. Polashenski, and B. Light, "Seasonal evolution of melt ponds on Arctic sea ice," J. Geophys. Res., 120, 5968-5982, doi:10.1002/2015JC011030, 2015.

More Info

4 Sep 2015

The seasonal evolution of melt ponds has been well documented on multiyear and landfast first-year sea ice, but is critically lacking on drifting, first-year sea ice, which is becoming increasingly prevalent in the Arctic. Using 1 m resolution panchromatic satellite imagery paired with airborne and in situ data, we evaluated melt pond evolution for an entire melt season on drifting first-year and multiyear sea ice near the 2011 Applied Physics Laboratory Ice Station (APLIS) site in the Beaufort and Chukchi seas. A new algorithm was developed to classify the imagery into sea ice, thin ice, melt pond, and open water classes on two contrasting ice types: first-year and multiyear sea ice. Surprisingly, melt ponds formed ~3 weeks earlier on multiyear ice. Both ice types had comparable mean snow depths, but multiyear ice had 0–5 cm deep snow covering ~37% of its surveyed area, which may have facilitated earlier melt due to its low surface albedo compared to thicker snow. Maximum pond fractions were 53 ± 3% and 38 ± 3% on first-year and multiyear ice, respectively. APLIS pond fractions were compared with those from the Surface Heat Budget of the Arctic Ocean (SHEBA) field campaign. APLIS exhibited earlier melt and double the maximum pond fraction, which was in part due to the greater presence of thin snow and first-year ice at APLIS. These results reveal considerable differences in pond formation between ice types, and underscore the importance of snow depth distributions in the timing and progression of melt pond formation.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close