Campus Map

Adam Maxwell

Research Assistant Professor, Urology






Ultrasonic tweezers: Technology to lift and steer solid objects in a living body

In a recent paper, a CIMU team describes successful experiments to manipulate a solid object within a living body with ultrasound beams transmitted through the skin.

More Info

15 Jul 2020

A collaborative, international research teams developed and tuned an ultrasound transducer to create vortex shaped beams that can trap, grab, levitate, and move in three dimensions mm-scale objects. The team is working to apply this technology to their all-in-one kidney stone treatment system that, in clinical trials, uses ultrasound to non-invasively break, erode, and move stones and stone fragments out of the kidney so that they may pass naturally from the body.

Mechanical Tissue Ablation with Focused Ultrasound

An experimental noninvasive surgery method uses nonlinear ultrasound pulses to liquefy tissue at remote target sites within a small focal region without damaging intervening tissues. A multi-institution, international team led by CIMU researchers is applying the method to the focal treatment of prostate tumors.

More Info

19 Mar 2020

Boiling histotripsy utilizes sequences of millisecond-duration HIFU pulses with high-amplitude shocks that form at the focus by nonlinear propagation effects. Due to strong attenuation of the ultrasound energy at the shocks, these nonlinear waves rapidly heat tissue and generate millimeter-sized boiling bubbles at the focus within each pulse. Then the further interaction of subsequent shocks with the vapor cavity causes tissue disintegration into subcellular debris through the acoustic atomization mechanism.

The method was proposed at APL-UW in collaboration with Moscow State University (Russia) and now is being evaluated for various clinical applications. It has particular promise because of its important clinical advantages: the treatment of tissue volumes can be accelerated while sparing adjacent structures and not injuring intervening tissues; it generates precisely controlled mechanical lesions with sharp margins; the method can be implemented in existing clinical systems; and it can be used with real-time ultrasound imaging for targeting, guidance, and evaluation of outcomes. In addition, compared to thermal ablation, BH may lead to faster resorption of the liquefied lesion contents.

PIXUL: PIXelated ULtrasound Speeds Disease Biomarker Search

More Info

26 Apr 2018

Accurate assessment of chromatin modifications can be used to improve detection and treatment of various diseases. Further, accurate assessment of chromatin modifications can have an important role in designing new drug therapies. This novel technology applies miniature ultrasound transducers to shear chromatin in standard 96-well microplates. PIXUL saves researchers hours of sample preparation time and reduces sample degradation.

More Videos


2000-present and while at APL-UW

Fragmentation of stones by burst wave lithotripsy in the first 19 humans

Harper, J.D., J.E. Lingeman, R.M. Sweet, I.S. Metzler, P. Sunaryo, J.C. Williams, A.D. Maxwell, J. Thiel, B.M. Cunitz, B. Dunmire, M.R. Bailey, and M.D. Sorensen, "Fragmentation of stones by burst wave lithotripsy in the first 19 humans," J. Urol., 207, doi:10.1097/JU.0000000000002446, 2022.

More Info

1 May 2022

We report stone comminution in the first 19 human subjects by burst wave lithotripsy (BWL), which is the transcutaneous application of focused, cyclic ultrasound pulses. This was a prospective multi-institutional feasibility study recruiting subjects undergoing clinical ureteroscopy (URS) for at least 1 stone ≤12 mm as measured on computerized tomography. During the planned URS, either before or after ureteroscope insertion, BWL was administered with a handheld transducer, and any stone fragmentation and tissue injury were observed. Up to 3 stones per subject were targeted, each for a maximum of 10 minutes. The primary effectiveness outcome was the volume percent comminution of the stone into fragments ≤2 mm. The primary safety outcome was the independent, blinded visual scoring of tissue injury from the URS video. Overall, median stone comminution was 90% (IQR 20, 100) of stone volume with 21 of 23 (91%) stones fragmented. Complete fragmentation (all fragments ≤2 mm) within 10 minutes of BWL occurred in 9 of 23 stones (39%). Of the 6 least comminuted stones, likely causative factors for decreased effectiveness included stones that were larger than the BWL beamwidth, smaller than the BWL wavelength or the introduction of air bubbles from the ureteroscope. Mild reddening of the papilla and hematuria emanating from the papilla were observed ureteroscopically. The first study of BWL in human subjects resulted in a median of 90% comminution of the total stone volume into fragments ≤2 mm within 10 minutes of BWL exposure with only mild tissue injury.

Non-Invasive monitoring of increased fibrotic tissue and hyaluronan deposition in the tumor microenvironment in the advanced stages of pancreatic ductal adenocarcinoma

Vohra, R., Y.-N. Wang, H. Son, S. Totten, A. Arora, A. Maxwell, and D. Lee, "Non-Invasive monitoring of increased fibrotic tissue and hyaluronan deposition in the tumor microenvironment in the advanced stages of pancreatic ductal adenocarcinoma," Cancers, 14, doi:10.3390/cancers14040999, 2022.

More Info

16 Feb 2022

Pancreatic ductal adenocarcinomas are characterized by a complex and robust tumor microenvironment (TME) consisting of fibrotic tissue, excessive levels of hyaluronan (HA), and immune cells. We utilized quantitative multi-parametric magnetic resonance imaging (mp-MRI) methods at 14 Tesla in a genetically engineered KPC (KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre) mouse model to assess the complex TME in advanced stages of tumor development. The whole tumor, excluding cystic areas, was selected as the region of interest for data analysis and subsequent statistical analysis. Pearson correlation was used for statistical inference. There was a significant correlation between tumor volume and T2 (r = –0.66), magnetization transfer ratio (MTR) (r = 0.60), apparent diffusion coefficient (ADC) (r = 0.48), and Glycosaminoglycan-chemical exchange saturation transfer (GagCEST) (r = 0.51). A subset of mice was randomly selected for histological analysis. There were positive correlations between tumor volume and fibrosis (0.92), and HA (r = 0.76); GagCEST and HA (r = 0.81); and MTR and CD31 (r = 0.48). We found a negative correlation between ADC low-b (perfusion) and Ki67 (r = –0.82). Strong correlations between mp-MRI and histology results suggest that mp-MRI can be used as a non-invasive tool to monitor the tumor microenvironment.

Design and characterization of an ultrasound transducer for combined histotripsy-thrombolytic therapy

Maxwell, A.D., K.J. Haworth, C.K. Holland, S.A. Hendley, W. Kreider, and K.B. Bader, "Design and characterization of an ultrasound transducer for combined histotripsy-thrombolytic therapy," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 156-165, doi:10.1109/TUFFC.2021.3113635, 2022.

More Info

1 Jan 2022

Chronic thrombi of the deep veins of the leg are resistant to dissolution or removal by current interventions and can act as thrombogenic sources. Histotripsy, a focused ultrasound therapy, uses the mechanical activity of bubble clouds to liquefy target tissues. In vitro experiments have shown that histotripsy enhances thrombolytic agent recombinant tissue plasminogen activator in a highly retracted clot model resistant to lytic therapy alone. Although these results are promising, further refinement of the acoustic source is necessary for in vivo studies and clinical translation. The source parameters for use in vivo were defined, and a transducer was fabricated for transcutaneous exposure of porcine and human iliofemoral deep-vein thrombosis (DVT) as the target. Based on the design criteria, a 1.5-MHz elliptical source with a 6-cm focal length and a focal gain of 60 was selected. The source was characterized by fiber-optic hydrophone and holography. High-speed photography showed that the cavitation cloud could be confined to dimensions smaller than the specified vessel lumen. The source was also demonstrated in vitro to create confined lesions within clots. The results support that this design offers an appropriate clinical prototype for combined histotripsy-thrombolytic therapy.

More Publications


Bonding of structures using high intensity focused ultrasound (HIFU)

Record of Invention Number: 49327

Tom Matula, Ekaterina Kuznetsova, Adam Maxwell


17 Aug 2021

Non-planar holographic beam shaping lenses for acoustics

Record of Invention Number: 49310

Mike Bailey, Mohamed Ghanem, Adam Maxwell


20 Jul 2021

Lithotripsy That Tunes the Frequency to the Stone Size

Record of Invention Number: 49262

Mike Bailey, Adam Maxwell, Oleg Sapozhnikov


12 May 2021

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center