Campus Map

Dana Manalang

Principal Engineer






Dana Manalang is a Principal Engineer in the APL-UW Electronics and Photonic Systems Department. She has held key roles in system development, testing, commissioning, and operations programs across multiple industries including ocean instrumentation, wireless sensor networks, semiconductor processing equipment, and defense.

She earned a B.S. in Ocean Engineering at Florida Institute of Technology and received her M.S.E.E from UC Berkeley. Before joining APL-UW in 2009, Dana was the Lead AUV Systems Engineer at Fugro Seafloor Surveys. She currently manages instrument operations and maintenance for the OOI Cabled Array.

Department Affiliation

Electronic & Photonic Systems


B.S. Ocean Engineering, Florida Institute of Technology, 1998

M.S. Electrical Engineering, University of California, Berkeley, 2000


2000-present and while at APL-UW

A thirty-month seafloor test of the A-o-A method for calibrating pressure gauges

Wilcock, W.S.D., D.A. Manalang, E.K. Fredrickson, M.J. Harrington, G. Cram, J. Tilley, J. Burnett, D. Martin, T. Kobayashi, and J.M. Paros, "A thirty-month seafloor test of the A-o-A method for calibrating pressure gauges," Front. Earth Sci., 8, doi:10.3389/feart.2020.600671, 2021.

More Info

15 Jan 2021

Geodetic observations in the oceans are important for understanding plate tectonics, earthquake cycles and volcanic processes. One approach to seafloor geodesy is the use of seafloor pressure gauges to sense vertical changes in the elevation of the seafloor after correcting for variations in the weight of the overlying oceans and atmosphere. A challenge of using pressure gauges is the tendency for the sensors to drift. The A-0-A method is a new approach for correcting drift. A valve is used to periodically switch, for a short time, the measured pressure from the external ocean to the inside of the instrument housing at atmospheric pressure. The internal pressure reading is compared to an accurate barometer to measure the drift which is assumed to be the same at low and high pressures. We describe a 30-months test of the A-0-A method at 900 m depth on the MARS cabled observatory in Monterey Bay using an instrument that includes two A-0-A calibrated pressure gauges and a three-component accelerometer. Prior to the calibrations, the two pressure sensors drift by 6 and 2 hPa, respectively. After the calibrations, the offsets of the corrected pressure sensors are consistent with each other to within 0.2 hPa. The drift corrected detided external pressure measurements show a 0.5 hPa/yr trend of increasing pressures during the experiment. The measurements are corrected for instrument subsidence based on the changes in tilt measured by the accelerometer, but the trend may include a component of subsidence that did not affect tilt. However, the observed trend of increasing pressure, closely matches that calculated from satellite altimetry and repeat conductivity, temperature and depth casts at a nearby location, and increasing pressures are consistent with the trend expected for the El NiƱo Southern Oscillation. We infer that the A-0-A drift corrections are accurate to better than one part in 105 per year. Additional long-term tests and comparisons with oceanographic observations and other methods for drift correction will be required to understand if the accuracy the A-0-A drift corrections matches the observed one part in 106 per year consistency between the two pressure sensors.

Future vision for autonomous ocean observations

Whitt, C., and 24 others including B. Polagye and D. Manalang, "Future vision for autonomous ocean observations," Front. Mar. Sci., 7, 697, doi:10.3389/fmars.2020.00697, 2020.

More Info

8 Sep 2020

Autonomous platforms already make observations over a wide range of temporal and spatial scales, measuring salinity, temperature, nitrate, pressure, oxygen, biomass, and many other parameters. However, the observations are not comprehensive. Future autonomous systems need to be more affordable, more modular, more capable and easier to operate. Creative new types of platforms and new compact, low power, calibrated and stable sensors are under development to expand autonomous observations. Communications and recharging need bandwidth and power which can be supplied by standardized docking stations. In situ power generation will also extend endurance for many types of autonomous platforms, particularly autonomous surface vehicles. Standardized communications will improve ease of use, interoperability, and enable coordinated behaviors. Improved autonomy and communications will enable adaptive networks of autonomous platforms. Improvements in autonomy will have three aspects: hardware, control, and operations. As sensors and platforms have more onboard processing capability and energy capacity, more measurements become possible. Control systems and software will have the capability to address more complex states and sophisticated reactions to sensor inputs, which allows the platform to handle a wider variety of circumstances without direct operator control. Operational autonomy is increased by reducing operating costs. To maximize the potential of autonomous observations, new standards and best practices are needed. In some applications, focus on common platforms and volume purchases could lead to significant cost reductions. Cost reductions could enable order-of-magnitude increases in platform operations and increase sampling resolution for a given level of investment. Energy harvesting technologies should be integral to the system design, for sensors, platforms, vehicles, and docking stations. Connections are needed between the marine energy and ocean observing communities to coordinate among funding sources, researchers, and end users. Regional teams should work with global organizations such as IOC/GOOS in governance development. International networks such as emerging glider operations (EGO) should also provide a forum for addressing governance. Networks of multiple vehicles can improve operational efficiencies and transform operational patterns. There is a need to develop operational architectures at regional and global scales to provide a backbone for active networking of autonomous platforms.

Report of the Resident AUV Workshop, 9–11 May 2018.

Delaney, J.B., D.A. Manalang, A. Marburg, A. Nawaz, and K. Daly, "Report of the Resident AUV Workshop, 9–11 May 2018." Technical Report APL-UW TR 1901, Applied Physics Laboratory, University of Washington, Seattle, 84 pp.

More Info

27 Mar 2020

Workshop participants divided into focus groups to consider resident autonomous undersea vehicle (R-AUV) use cases related to these four application areas: mid-ocean ridges and the overlying water column; gas hydrates and coastal oceans; polar, under-ice, and off-planet oceans; and maintenance and operation of installations.

The following technical elements emerged as clear common themes across R-AUV deployment scenarios: power and data management sub-systems, communications, navigation, capable sensor and payload systems, advanced autonomy functions. The single most important conclusion of the workshop is that incremental technological steps toward realizing routine R-AUV operations could yield revolutionary scientific and operational value.

More Publications

In The News

New UW-authored children's book offers a robot's-eye view of the deep ocean

UW News, Hannah Hickey

After years working on a cabled observatory that monitors the Pacific Northwest seafloor and water above, APL-UW engineer Dana Manalang decided to share the wonder of the deep sea with younger audiences.

12 Oct 2018

New deep-sea pressure sensor could monitor dangerous undersea faults

IEEE Spectrum, Amy Nordrum

A marine geophysicist and electronic engineer from the University of Washington are now testing a new self-calibrating pressure sensor that could be deployed on the seafloor as a low-cost, long-term way to monitor seismic activity.

12 Oct 2017

Hacking a pressure sensor to track gradual motion along marine faults

UW News, Hannah Hickey

Engineers at the UW Applied Physics Laboratory modified an existing Paros pressure sensor. The sensitive quartz crystal that measures the seafloor pressure can now be connected to measure pressure inside its titanium instrument case, with a known pressure and another barometer to check the value.

21 Sep 2017

More News Items


Self-calibrating Seafloor Pressure Measurement System with Increased Operational Life and Improved Reliability

Record of Invention Number: 48583

Geoff Cram, Mike Harrington, Dana Manalang, James Tilley


22 Mar 2019

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center