APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

John Kucewicz

Senior Engineer

Email

kucewicz@apl.washington.edu

Phone

206-221-3283

Education

B.S. Computer Engineering, Texas A&M University, 1995

Ph.D. Bioengineering, University of Washington, 2004

Publications

2000-present and while at APL-UW

Histotripsy treatment of abscesses

Matula, T.J., Y.-N. Wang, T. Khokhlova, D.F. Leotta, J. Kucewicz, A.A. Brayman, M. Bruce, A.D. Maxwell, B.E. MacConaghy, G. Thomas, K. Richmond, K. Chan, and W. Monsky, "Histotripsy treatment of abscesses," in Proc., IEEE International Ultrasonics Symposium, 7-11 September, Las Vegas, NV, doi:10.1109/IUS46767.2020.9251683 (IEEE, 2020).

More Info

7 Sep 2020

Abscesses are walled-off collections of infected fluids containing pus and bacteria. They are often treated with percutaneous drainage in which a drainage catheter may be sutured in place for up to several weeks. Complications such as clogged drains or secondary infections require rehospitalization and wound management. Bacteria are susceptible to mechanical damage, and thus we hypothesize that histotripsy may be a potential new paradigm for treating abscesses noninvasively, without the need for long term catheterization and antibiotics. We developed a porcine animal model that recapitulates some of the features of human abscesses (including size and loculations). Boiling and cavitation histotripsy treatments were applied to subcutaneous and intramuscular abscesses in this porcine model. Ultrasound imaging was used to evaluate abscess maturity, for treatment monitoring and assessment of post-treatment outcomes. Disinfection was quantified by counting bacteria colonies from samples aspirated before and after treatment. Histopathological evaluation of the abscesses was performed to identify changes resulting from histotripsy treatment and potential collateral damage. The results of this pilot study suggest focused ultrasound may lead to a technology for in situ treatment of acoustically accessible abscesses.

Ultrasound imaging of abscesses before and during histotripsy treatment

Bruce, M., D.F. Leotta, Y.-N. Wang, T. Khokhlova, J. Kucewicz, A.D. Maxwell, K. Chan, W. Monsky, and T.J. Matula, "Ultrasound imaging of abscesses before and during histotripsy treatment," in Proc., IEEE International Ultrasonics Symposium, 7-11 September, Las Vegas, NV, doi:10.1109/IUS46767.2020.9251386 (IEEE, 2020).

More Info

7 Sep 2020

Abscesses are walled-off collections of infected fluids most often treated with percutaneous drains placed under CT guidance. Complications such as clogged drains or secondary infections require rehospitalization and wound management. Histotripsy treatment has the potential to eliminate the need for long term catheterization and antibiotics. The progression of abscess development has yet to be fully described. The objective of this study was to use the latest advances in non-contrast ultrasound technologies to characterize abscess development in a porcine animal model. Intramuscular or subcutaneous injections of bacteria plus dextran particles as an irritant led to identifiable abscesses over a 2- to 3-week period. Ultrasound imaging was performed at least weekly, in some cases with a 3D tracking device that provided quantifiable size and shape measurements. Abscess progression was also measured with a plane-wave Doppler mode providing increased sensitivity to low-velocity flows, while abscess stiffness was quantified using shear wave elastography. Most of the mature abscesses were characterized by a rounded core of varying echogenicity surrounded by a hypoechoic capsule that was highly vascularized on Doppler imaging. A treatable abscess was defined by its hypervascular rim and avascular core. Stiffness varied within the abscess but generally decreased over time. Abscess echogenicity, shape, stiffness and vascularity potentially provide features to identify lesions suitable for treatment.

Effect of stiffness of large extravascular hematomas on their susceptibility to boiling histotripsy liquefaction in vitro

Khokhlova, T.D., J.C. Kucewicz, E.M. Ponomarchuk, C. Hunter, M. Bruce, V.A. Khokhlova, T.J. Matula, and W. Monsky, "Effect of stiffness of large extravascular hematomas on their susceptibility to boiling histotripsy liquefaction in vitro," Ultrasound Med. Biol., 46, 2007-2016, doi:10.1016/j.ultrasmedbio.2020.04.023, 2020.

More Info

1 Aug 2020

Large intra-abdominal, retroperitoneal and intramuscular hematomas are common consequences of sharp and blunt trauma and post-surgical bleeds, and often threaten organ failure, compartment syndrome or spontaneous infection. Current therapy options include surgical evacuation and placement of indwelling drains that are not effective because of the viscosity of the organized hematoma. We have previously reported the feasibility of using boiling histotripsy (BH) — a pulsed high-intensity focused ultrasound method — for liquefaction of large volumes of freshly coagulated blood and subsequent fine-needle aspiration. The goal of this work was to evaluate the changes in stiffness of large coagulated blood volumes with aging and retraction in vitro, and to correlate these changes with the size of the BH void and, therefore, the susceptibility of the material to BH liquefaction. Large-volume (55–200 mL) whole-blood clots were fabricated in plastic molds from human and bovine blood, either by natural clotting or by recalcification of anticoagulated blood, with or without addition of thrombin. Retraction of the clots was achieved by incubation for 3 h, 3 d or 8 d. The shear modulus of the samples was measured with a custom-built indentometer and shear wave elasticity (SWE) imaging. Sizes of single liquefied lesions produced with a 1.5-MHz high-intensity focused ultrasound transducer within a 30-s standard BH exposure served as the metric for susceptibility of clot material to this treatment. Neither the shear moduli of naturally clotted human samples (0.52 ± 0.08 kPa), nor their degree of retraction (ratio of expelled fluid to original volume 50%––58%) depended on the length of incubation within 0–8 d, and were significantly lower than those of bovine samples (2.85 ± 0.17 kPa, retraction 5%–38%). In clots made from anticoagulated bovine blood, the variation of calcium chloride concentration within 5––40 mmol/L did not change the stiffness, whereas lower concentrations and the addition of thrombin resulted in significantly softer clots, similar to naturally clotted human samples. Within the achievable shear modulus range (0.4–1.6 kPa), the width of the BH-liquefied lesion was more affected by the changes in stiffness than the length of the lesion. In all cases, however, the lesions were larger compared with any soft tissue liquefied with the same BH parameters, indicating higher susceptibility of hematomas to BH damage. These results suggest that clotted bovine blood with added thrombin is an acceptable in vitro model of both acute and chronic human hematomas for assessing the efficiency of BH liquefaction strategies.

More Publications

Inventions

Filtering Systems and Methods for Suppression of Non-Stationary Reverberation in Ultrasound Images

The present technology is generally directed to filtering systems and methods for suppression of reverberation artifacts in ultrasound images. In some embodiments, a method of obtaining a filtered ultrasound image includes taking a first ultrasound image of a target tissue using an applicator. At least a portion of the applicator is moved such that the reverberation artifact ultrasound path length changes relative to the first position of the applicator. A second ultrasound image of the target tissue is then taken. The first and second ultrasound images are synthesized using at least one filtering method. The filtering method attenuates or removes reverberation artifacts in the synthesized ultrasound image.

Patent Number: 10,713,758

John Kucewicz

Patent

7 Jul 2020

Non-invasive Cardiac Arrest Monitor Guided by Ultrasound and Impedance Plethymography

Record of Invention Number: 48108

Graham Nichol, Adeyinka Adedipe, John Kucewicz, Pierre Mourad, David Salcido, Matthew Sundermann

Disclosure

28 Jun 2017

Ultrasound Based Method and Apparatus for Stone Detection and to Facilitate Clearance Thereof

Patent Number: 9,597,103

Mike Bailey, John Kucewicz, Barbrina Dunmire, Neil Owen, Bryan Cunitz

More Info

Patent

21 Mar 2017

Described herein are methods and apparatus for detecting stones by ultrasound, in which the ultrasound reflections from a stone are preferentially selected and accentuated relative to the ultrasound reflections from blood or tissue. Also described herein are methods and apparatus for applying pushing ultrasound to in vivo stones or other objects, to facilitate the removal of such in vivo objects.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close