Wendy Ermold Physicist IV wermold@apl.washington.edu Phone 206-543-7112 |
Education
B.S. Physics, Seattle University, 1995
M.A. Applied Physics, University of Washington - Seattle, 2003
Projects
Seasonality of Circumpolar Tundra: Ocean and Atmosphere Controls and Effects on Energy and Carbon Budgets Through this project, investigators will characterize the seasonal linkages between the land surface greenness and a suite of land, atmosphere, and ocean characteristics, focusing on the Beringia/ Beaufort Sea, where there have been strong positive increases in the Normalized Difference Vegetation Index (NDVI) over the past 25 years, and the west-central Arctic Eurasia region, where the NDVI trends have been slightly negative. This is a collaborative project led by Howard Epstein at the University of Virginia with Uma Bhatt, Univ. of Alaska, Fairbanks, and Mike Steele, University of Washington. |
|
Videos
Polar Science Weekend @ Pacific Science Center This annual event at the Pacific Science Center shares polar science with thousands of visitors. APL-UW researchers inspire appreciation and interest in polar science through dozens of live demonstrations and hands-on activities. |
More Info |
10 Mar 2017
|
|||||||
Polar research and technology were presented to thousands of visitors by APL-UW staff during the Polar Science Weekend at Seattle's Pacific Science Center. The goal of is to inspire an appreciation and interest in science through one-on-one, face-to-face interactions between visitors and scientists. Guided by their 'polar passports', over 10,000 visitors learned about the Greenland ice sheet, the diving behavior of narwhals, the difference between sea ice and freshwater ice, how Seagliders work, and much more as they visited dozens of live demonstrations and activities. |
Arctic Switchyard Like a railroad switchyard where loads come together, rearrange, and exit, the water masses of the Arctic Ocean are tracked as they move toward the North Atlantic Ocean. |
1 Nov 2010
|
Publications |
2000-present and while at APL-UW |
Float your boat launching students into the Arctic Ocean Forcucci, D., I. Rigor, W. Ermold, and H. Stern, "Float your boat launching students into the Arctic Ocean," Oceanography, 35, doi:10.5670/oceanog.2022.102, 2022. |
More Info |
1 Jun 2022 |
|||||||
Our understanding of Arctic sea ice and ocean circulation began with the drift of two wooden boats. Following the legacy of the early Arctic explorers, Float Your Boat (FYB) is a unique and fun outreach program that provides a novel opportunity for students and the public to learn about the Arctic Ocean. Participants decorate toy wooden boats with words and art, and the boats are deployed on Arctic Ocean ice floes by icebreakers. Personal connections to the Arctic develop with the anticipation and excitement of the boats being reported on distant shores years later by beachcombers. |
Snowpack measurements suggest role for multi-year sea ice regions in Arctic atmospheric bromine and chlorine chemistry Peterson, P.K., M. Hartwig, N.W. May, E. Schwartz, I. Rigor, W. Ermold, M. Steele, J.H. Morison, S.V. Nghiem, and K.A. Pratt, "Snowpack measurements suggest role for multi-year sea ice regions in Arctic atmospheric bromine and chlorine chemistry," Elem. Sci. Anth., 7 doi:10.1525/elementa.352, 2019. |
More Info |
3 May 2019 |
|||||||
As sources of reactive halogens, snowpacks in sea ice regions control the oxidative capacity of the Arctic atmosphere. However, measurements of snowpack halide concentrations remain sparse, particularly in the high Arctic, limiting our understanding of and ability to parameterize snowpack participation in tropospheric halogen chemistry. To address this gap, we measured concentrations of chloride, bromide, and sodium in snow samples collected during polar spring above remote multi-year sea ice (MYI) and first-year sea ice (FYI) north of Greenland and Alaska, as well as in the central Arctic, and compared these measurements to a larger dataset collected in the Alaskan coastal Arctic by Krnavek et al. (2012). Regardless of sea ice region, these surface snow samples generally featured lower salinities, compared to coastal snow. Surface snow in FYI regions was typically enriched in bromide and chloride compared to seawater, indicating snowpack deposition of bromine and chlorine-containing trace gases and an ability of the snowpack to participate further in bromine and chlorine activation processes. In contrast, surface snow in MYI regions was more often depleted in bromide, indicating it served as a source of bromine-containing trace gases to the atmosphere prior to sampling. Measurements at various snow depths indicate that the deposition of sea salt aerosols and halogen-containing trace gases to the snowpack surface played a larger role in determining surface snow halide concentrations compared to upward brine migration from sea ice. Calculated enrichment factors for bromide and chloride, relative to sodium, in the MYI snow samples suggests that MYI regions, in addition to FYI regions, have the potential to play an active role in Arctic boundary layer bromine and chlorine chemistry. The ability of MYI regions to participate in springtime atmospheric halogen chemistry should be considered in regional modeling of halogen activation and interpretation of satellite-based tropospheric bromine monoxide column measurements. |
Changing seasonality of panarctic tundra vegetation in relationship to climatic variables Bhatt, U.S., D.A. Walker, M.I. Raynolds, P.A. Bieniek, H.E. Epstein, J.C. Comiso, J.E. Pinzon, C.J. Tucker, M. Steele, W. Ermold, and J. Zhang, "Changing seasonality of panarctic tundra vegetation in relationship to climatic variables," Environ. Res. Lett., 12, doi:10.1088/1748-9326/aa6b0b, 2017. |
More Info |
5 May 2017 |
|||||||
Potential climate drivers of Arctic tundra vegetation productivity are investigated to understand recent greening and browning trends documented by maximum normalized difference vegetation index (NDVI) (MaxNDVI) and time-integrated NDVI (TI-NDVI) for 19822015. Over this period, summer sea ice has continued to decline while oceanic heat content has increased. The increases in summer warmth index (SWI) and NDVI have not been uniform over the satellite record. SWI increased from 1982 to the mid-1990s and remained relatively flat from 1998 onwards until a recent upturn. While MaxNDVI displays positive trends from 19822015, TI-NDVI increased from 1982 until 2001 and has declined since. The data for the first and second halves of the record were analyzed and compared spatially for changing trends with a focus on the growing season. Negative trends for MaxNDVI and TI-NDVI were more common during 19992015 compared to 19821998. |