APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Melinda Webster

Research Scientist/Engineer - Principal

Email

melindaw@uw.edu

Phone

206-685-4551

Department Affiliation

Polar Science Center

Education

B.S. Oceanography, University of Washington, 2010

M.S. Oceanography, University of Washington, 2013

Ph.D. Oceanography, University of Washington, 2016

Publications

2000-present and while at APL-UW

Theoretical estimates of light transmittance at the MOSAiC central observatory

Perovich, D., and 17 others including B. Light and M. Webster, "Theoretical estimates of light transmittance at the MOSAiC central observatory, " Elem. Sci. Anth., 13, doi:10.1525/elementa.2024.00076, 2025.

More Info

22 Jul 2025

Light transmission through a sea ice cover has strong implications for the heat content of the upper ocean, the magnitude of bottom and lateral ice melt, and primary productivity in the ocean. Light transmittance in the vicinity of the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) Central Observatory was estimated by driving a two-stream radiative transfer model with physical property observations. Data include point and transect observations of snow depth, surface scattering layer thickness, ice thickness, and pond depth. The temporal evolution of light transmittance at specific sites and the spatial variability along transect lines were computed. Ponds transmitted 4–6 times as much solar energy per unit area as bare ice. On July 25, ponds covered about 18% of the area and contributed roughly 50% of the sunlight transmitted through the ice cover. Approximating the transmittance along a transect line using average values for the physical properties will always result in lower light transmittance than finding the average light transmittance using the full distribution of points. Transmitted solar energy calculated using the standard five ice thickness categories and three surface types used in the Los Alamos sea ice model CICE, the sea ice component of many weather and climate models, was only about 1 W m-2 less than using all the points along the transect. This minor difference suggests that the important processes and resulting feedbacks relating to solar transmittance can be represented in models that use five or more categories of ice thickness distributions.

Predicting melt pond coverage on Arctic sea ice from pre-melt surface topography

Fuchs, N., G. Birnbaum, N. Neckel, T. Kagel, M. Webster, and A. Wernecke, "Predicting melt pond coverage on Arctic sea ice from pre-melt surface topography," Geophys. Res. Lett., 52, doi:10.1029/2025GL115033, 2025.

More Info

16 May 2025

Sea-ice melt ponds form in the depressions of pre-melt surface topography, a process widely accepted yet lacking larger-scale evaluation through explicit comparisons. During MOSAiC, we collected multi-dimensional aerial data to examine the relationship between pre-melt surface topography and melt pond evolution across an entire Arctic ice floe. Using hydrological models, we analyze the correlation between potential meltwater accumulation areas identified in winter and spring topographies, available meltwater, and observed pond coverage. Our findings demonstrate a strong connection, revealing a 72% accuracy in matching low areas to melt ponds, with 98% of basins deeper than 0.5 m transforming into ponds. Incorporating assumptions regarding meltwater availability improve predictions of melt pond fraction and highlight key factors driving extensive lateral runoff networks on the floe. No significant differences are observed between first- and second-year ice. This study provides valuable ground truth for future modeling and measurements of pond formation.

Investigating snow sinks on level sea ice: A case study in the western Arctic

Merkouriadi, I., A. Jutila, G.E. Liston, A. Preusser, and M.A. Webster, "Investigating snow sinks on level sea ice: A case study in the western Arctic," J. Glaciol., 71, doi:10.1017/jog.2025.34, 2025.

More Info

14 May 2025

SnowModel-LG reconstructs snow depth and density over sea ice, explicitly resolving important snow sinks like blowing snow sublimation, static surface sublimation and melt, but not snow-ice formation. To examine snow sinks on level sea ice, we coupled SnowModel-LG with HIGHTSI, a 1-D thermodynamic sea-ice model, to create SMLG_HS. SMLG_HS simulations of snow depth and level ice thickness were evaluated against high-resolution airborne observations from the western Arctic, highlighting the importance of snow mass redistribution processes, i.e. snow’s tendency to leave level ice and accumulate over deformed ice due to wind-induced redistribution. Not accounting for snow mass redistribution, SMLG_HS overestimates snow depth on level ice, resulting in underestimation of level ice thickness and overestimation of snow-ice thickness. Our case study shows that snow depth on level ice needs to be reduced by 40% to simulate both snow depth and level ice thickness realistically in the western Arctic in April 2017. An independent analysis of snow volume distribution between level and deformed sea ice using airborne radar observations supported the model results and revealed a linear relationship that enables estimating the amount of snow remaining on level ice at the end of winter based on the amount of ice deformation.

More Publications

In The News

Winter sea ice in the Arctic just hit a record low

The Washington Post

Just 5.53 million square miles of ice formed over the winter freeze, marking the lowest extent since satellite record keeping began in the 1970s.

28 Mar 2025

Paws of polar bears sustaining ice-related injuries in a warming Arctic

UW News, Hannah Hickey

While surveying the health of two polar bear populations, researchers found lacerations, hair loss, ice buildup and skin ulcerations primarily affecting the feet of adult bears as well as other parts of the body.

22 Oct 2024

Arctic melt ponds influence sea ice extent each summer — but how much?

Mongabay, Michael C. Bradbury

July marks the midpoint of the summer sea ice melt season, during which ice declines rapidly under the almost constant Arctic sun, and melt ponds form on ice floes. Scientists study melt ponds to better understand sea ice dynamics and to help forecast the annual sea ice minimum in September.

20 Aug 2024

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close