APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

EJ Rainville

Email

erainville@apl.washington.edu

Publications

2000-present and while at APL-UW

Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea

Drushka, K., E. Westbrook, F.M. Bingham, P. Gaube, S. Dickinson, S. Fournier, V. Menezes, S. Misra, J.P. Valentin, E.J. Rainville, J.J. Schanze, C. Schmidgall, A. Shcherbina, M. Steele, J. Thomson, and S. Zippel, "Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea," Earth Syst. Sci. Data, 16, 4209-4242, doi:10.5194/essd-16-4209-2024, 2024.

More Info

16 Sep 2024

As our planet warms, Arctic sea ice coverage continues to decline, resulting in complex feedbacks with the climate system. The core objective of NASA's Salinity and Stratification at the Sea Ice Edge (SASSIE) mission is to understand how ocean salinity and near-surface stratification affect upper-ocean heat content and thus sea ice freeze and melt. SASSIE specifically focuses on the formation of Arctic Sea ice in autumn. The SASSIE field campaign in 2022 collected detailed observations of upper-ocean properties and meteorology near the sea ice edge in the Beaufort Sea using ship-based and piloted and drifting assets. The observations collected during SASSIE include vertical profiles of stratification up to the sea surface, air–sea fluxes, and ancillary measurements that are being used to better understand the role of salinity in coupled Arctic air–sea–ice processes. This publication provides a detailed overview of the activities during the 2022 SASSIE campaign and presents the publicly available datasets generated by this mission (available at https://podaac.jpl.nasa.gov/SASSIE, last access: 29 May 2024; DOIs for individual datasets in the "Data availability" section), introducing an accompanying repository that highlights the numerical routines used to generate the figures shown in this work.

Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys

Rainville, E., J. Thomson, M. Moulton, and M. Derakhti, "Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys," Earth Syst. Sci. Data, 15, 5135-5151, doi:10.5194/essd-15-5135-2023, 2023.

More Info

27 Nov 2023

Surface gravity wave breaking occurs along coastlines in complex spatial and temporal patterns that significantly impact erosion, scalar transport, and flooding. Numerical models are used to predict wave breaking and associated processes but many lack sufficient evaluation with observations. To fill the need for more nearshore wave measurements, we deployed coherent arrays of small-scale, free-drifting buoys named microSWIFTs. The microSWIFT is a small buoy equipped with a GPS module to measure the buoy's position, horizontal velocities, and an inertial measurement unit (IMU) to directly measure the buoy's rotation rates, accelerations, and heading. Measurements were collected over a 27 d field experiment in October 2021 at the US Army Corps of Engineers Field Research Facility in Duck, NC. The microSWIFTs were deployed as a series of coherent arrays, meaning they all sampled simultaneously with a common time reference, leading to a rich spatial and temporal dataset during each deployment. Measurements spanned offshore significant wave heights ranging from 0.5 to 3 m and peak wave periods ranging from 5 to 15 s over the entire experiment.

The completed dataset consists of 67 deployment files that contain 971 drift tracks that contain all associated data. We use an attitude and heading reference system (AHRS) 9-degrees-of-freedom Kalman filter to rotate the measured accelerations from the reference frame of the buoy to the Earth reference frame. We then use the corrected accelerations to compute the vertical velocity and sea-surface elevation. We give example evaluations of wave spectral energy density estimates from individual microSWIFTs compared with a nearby acoustic wave and current (AWAC) sensor. A zero-crossing algorithm is applied to each buoy time series of sea-surface elevation to extract realizations of measured surface gravity waves, yielding 116 307 wave realizations throughout the experiment. We also compute significant wave height estimates from the aggregate wave realizations and compare these estimates with the nearby AWAC estimates. An example of spatial variability in cross-shore velocity and vertical acceleration is explored. Wave-breaking events, detected by high-intensity vertical acceleration peaks, are explored, and the cross-shore distribution of all breaking events detected in the experiment is shown. A total of 3419 wave-breaking events were detected across the entire experiment. These data are available at https://doi.org/10.5061/dryad.hx3ffbgk0 (Rainville et al., 2023) and will be used to investigate nearshore wave kinematics, transport of buoyant particles, and wave-breaking processes.

Development and testing of microSWIFT expendable wave buoys

Thomson, J., P. Bush, V.C. Contreras, N. Clemett, J. Davis, A. de Klerk, E. Iseley, E.J. Rainville, B. Salmi, and J. Talbert, "Development and testing of microSWIFT expendable wave buoys," Coastal Eng. J., EOR, doi:10.1080/21664250.2023.2283325, 2023.

More Info

22 Nov 2023

Expendable microSWIFT buoys have been developed and tested for measuring ocean surface waves. Wave spectra are calculated via onboard processing of GPS velocities sampled at 5 Hz, and wave spectra are delivered to a shore-side server via Iridium modem once per hour. The microSWIFTs support additional sensor payloads, in particular seawater conductivity and temperature. The buoys have a non-traditional, cylindrical shape that is required for deployment via the dropsonde tube of research aircraft. Multiple versions have been developed and tested, with design considerations that include: buoy hydrodynamics, sensor noise, algorithm tuning, processor power, and ease of deployment. Field testing in a range of conditions, including near sea ice and in a hurricane, has validated the design.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close