![]() |
EJ Rainville erainville@apl.washington.edu |
Videos
![]() |
microSWIFTs: Tiny Oceanographic Floats Measure Extreme Coastal Conditions These small, inexpensive ocean drifters are the latest generation of the Surface Wave Instrument Float with Tracking (SWIFT) platform developed at APL-UW. They are being used in several collaborative research experiments to increase the density of nearshore wave observations. |
19 Apr 2022
|
![]() |
Publications |
2000-present and while at APL-UW |
![]() |
More room at the top: how small buoys help reveal the detailed dynamics of the air-sea interface Cavaleri, L., and 14 others including J. Davis, E.J. Rainville, and J. Thomson, "More room at the top: how small buoys help reveal the detailed dynamics of the air-sea interface," Bull. Am. Meteorol. Soc., 106, E1063–E1076, doi:10.1175/BAMS-D-24-0120.1, 2025. |
More Info |
1 Jun 2025 ![]() |
![]() |
|||||
The sea surface and air-sea exchange processes have been identified as essential for both short- and long-term atmospheric and ocean forecasts. The two phases of the fluid layer covering our planet interact across a vast range of scales that we need to explore to achieve a better understanding of the exchange processes. While satellites provide a distributed large-scale view of the sea surface situation, highly detailed measurements, e.g., from oceanographic towers, are necessarily local. An intermediate solution can be provided by swarms of miniature surface buoys that measure waves and other key parameters. As size, weight, and cost are reduced, these can be deployed in large numbers to investigate specific processes that are at present only crudely parameterized in our models, also because of scarcity of good measurements. Perhaps the most crucial process is white-capping in stormy conditions, where air-sea exchanges are enhanced by one or two orders of magnitude. Other applications include wave-current interactions, wave-ice interactions, and plunging breakers in the coastal zone. |
![]() |
Surface wave development and ambient sound in the ocean Thomson, J., J. Yang, R. Taylor, E.J. Rainville, K. Zeiden, L. Rainville, S. Brenner, M. Ballard, and M.F. Cronin, "Surface wave development and ambient sound in the ocean," J. Geophys. Res., 129, doi:10.1029/2024JC021921, 2024. |
More Info |
22 Dec 2024 ![]() |
![]() |
|||||
Wind, wave, and acoustic observations are used to test a scaling for ambient sound levels in the ocean that is based on wind speed and the degree of surface wave development (at a given wind speed). The focus of this study is acoustic frequencies in the range 120 kHz, for which sound is generated by the bubbles injected during surface wave breaking. Traditionally, ambient sound spectra in this frequency range are scaled by wind speed alone. In this study, we investigate a secondary dependence on surface wave development. For any given wind-speed, ambient sound levels are separated into conditions in which waves are 1) actively developing or 2) fully developed. Wave development is quantified using the non-dimensional wave height, a metric commonly used to analyze fetch or duration limitations in wave growth. This simple metric is applicable in both coastal and open ocean environments. Use of the wave development metric to scale sound spectra is first motivated with observations from a brief case study near the island of Jan Mayen (Norwegian Sea), then robustly tested with long time-series observations of winds and waves at Ocean Station Papa (North Pacific Ocean). When waves are actively developing, ambient sound levels are elevated 23 dB across the 120 kHz frequency range. This result is discussed in the context of sound generation during wave breaking and sound attenuation by persistent bubble layers. |
![]() |
Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea Drushka, K., E. Westbrook, F.M. Bingham, P. Gaube, S. Dickinson, S. Fournier, V. Menezes, S. Misra, J.P. Valentin, E.J. Rainville, J.J. Schanze, C. Schmidgall, A. Shcherbina, M. Steele, J. Thomson, and S. Zippel, "Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea," Earth Syst. Sci. Data, 16, 4209-4242, doi:10.5194/essd-16-4209-2024, 2024. |
More Info |
16 Sep 2024 ![]() |
![]() |
|||||
As our planet warms, Arctic sea ice coverage continues to decline, resulting in complex feedbacks with the climate system. The core objective of NASA's Salinity and Stratification at the Sea Ice Edge (SASSIE) mission is to understand how ocean salinity and near-surface stratification affect upper-ocean heat content and thus sea ice freeze and melt. SASSIE specifically focuses on the formation of Arctic Sea ice in autumn. The SASSIE field campaign in 2022 collected detailed observations of upper-ocean properties and meteorology near the sea ice edge in the Beaufort Sea using ship-based and piloted and drifting assets. The observations collected during SASSIE include vertical profiles of stratification up to the sea surface, air–sea fluxes, and ancillary measurements that are being used to better understand the role of salinity in coupled Arctic airseaice processes. This publication provides a detailed overview of the activities during the 2022 SASSIE campaign and presents the publicly available datasets generated by this mission (available at https://podaac.jpl.nasa.gov/SASSIE, last access: 29 May 2024; DOIs for individual datasets in the "Data availability" section), introducing an accompanying repository that highlights the numerical routines used to generate the figures shown in this work. |