Anda Vladoiu Senior Oceanographer avladoiu@apl.uw.edu Phone 206-685-9080 |
Education
M.S. Oceanography, University of Southampton (Southampton, UK), 2015
Ph.D. Physical Oceanography, University of Sorbonne (Paris, France), 2018
Publications |
2000-present and while at APL-UW |
Turbulence generation via nonlinear lee wave trailing edge instabilities in Kuroshioseamount interactions Yeh, Y.Y., and 7 others including R.-C. Lien and A. Vladoiu, "Turbulence generation via nonlinear lee wave trailing edge instabilities in Kuroshioseamount interactions," J. Geophys. Res., 129, doi:10.1029/2024JC020971, 2024. |
More Info |
1 Sep 2024 |
|||||||
Physical processes behind flow-topography interactions and turbulent transitions are essential for parameterization in numerical models. We examine how the Kuroshio cascades energy into turbulence upon passing over a seamount, employing a combination of shipboard measurements, tow-yo microstructure profiling, and high-resolution mooring. The seamount, spanning 5 km horizontally with two summits, interacts with the Kuroshio, whose flow speed ranges from 1 to 2 m s-1, modulated by tides. The forward energy cascade process is commenced by forming a train of 23 nonlinear lee waves behind the summit with a wavelength of 0.51 km and an amplitude of 50100 m. A train of KelvinHelmholtz (KH) billows develops immediately below the lee waves and extends downstream, leading to enhanced turbulence. The turbulent kinetic energy dissipation rate is O (10-710-4) W kg-1, varying in phase with the upstream flow speed modulated by tides. KH billows occur primarily at the lee wave's trailing edge, where the combined strong downstream shear and low-stratification recirculation trigger the shear instability, Ri < 1/4. The recirculation also creates an overturn susceptible to gravitational instability. This scenario resembles the rotor, commonly found in atmospheric mountain waves but rarely observed in the ocean. A linear stability analysis further suggests that critical levels, where the KH instability extracts energy from the mean flow, are located predominantly at the strong shear layer of the lee wave's upwelling portion, coinciding with the upper boundary of the rotor. These novel observations may provide insights into flow-topography interactions and improve physics-based turbulence parameterization. |
Energy partition between submesoscale internal waves and quasi-geostrophic vortical motion in the pycnocline Vladoiu, A., R.-C. Lien, and E. Kunze, "Energy partition between submesoscale internal waves and quasi-geostrophic vortical motion in the pycnocline," J. Phys. Oceanogr., 54, 1285-1307, doi:10.1175/JPO-D-23-0090.1, 2024. |
More Info |
19 Feb 2024 |
|||||||
Shipboard ADCP velocity and towed CTD chain density measurements from the eastern North Pacific pycnocline are used to segregate energy between linear internal waves (IW) and linear vortical motion (quasi-geostrophy, QG) in 2-D wavenumber space spanning submesoscale horizontal wavelengths λx ∼ 1 – 50 km and finescale vertical wavelengths λz ∼ 7 – 100 m. Helmholtz decomposition and a new Burger-number Bu decomposition yield similar results despite different methodologies. Partition between IW and QG total energies depends on 𝐵𝑢. For Bu < 0.01, available potential energy EP exceeds horizontal kinetic energy EK and is contributed mostly by QG. In contrast, energy is nearly equipartitioned between QG and IW for Bu » 1. For Bu < 2, EK is contributed mainly by IW, and EP by QG, while, for Bu > 2, contributions are reversed. Vertical shear variance is contributed primarily by near-inertial IW at small λz, implying negligible QG contribution to vertical shear instability. Conversely, both QG and IW at the smallest λx ∼ 1 km contribute large horizontal shear variance, such that both may lead to horizontal shear instability. Both QG and IW contribute to vortex-stretching at small vertical scales. For QG, the relative vorticity contribution to linear potential vorticity anomaly increases with decreasing horizontal and increasing vertical scales. |
The Green Edge cruise: Investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom Bruyant, F., et al., including A. Vladoiu, "The Green Edge cruise: Investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom," Earth Syst. Sci. Data, 14, 4607-4642, doi:10.5194/essd-14-4607-2022, 2022. |
More Info |
20 Oct 2022 |
|||||||
The Green Edge project was designed to investigate the onset, life, and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in Arctic Ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the Arctic environment will affect it. Green Edge was a large multidisciplinary, collaborative project bringing researchers and technicians from 28 different institutions in seven countries together, aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in Baffin Bay, in the Canadian Arctic. This paper describes the sampling strategy and the dataset obtained from the research cruise, which took place aboard the Canadian Coast Guard ship (CCGS) Amundsen in late spring and early summer 2016. The sampling strategy was designed around the repetitive, perpendicular crossing of the marginal ice zone (MIZ), using not only ship-based station discrete sampling but also high-resolution measurements from autonomous platforms (Gliders, BGC-Argo floats …) and under-way monitoring systems. |