APL Home
APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jim Luby

Senior Principal Engineer

Email

jcl@apl.washington.edu

Phone

206-543-6854

Biosketch

Jim Luby's research interests include autonomous undersea vehicles, underwater acoustics, statistical signal processing, marine mammal detection and classification, communications and networking, and automatic control. He has been with APL-UW since 1979.

Department Affiliation

Electronic & Photonic Systems

Education

B.S. Electrical Engineering, University of Connecticut, 1976

M.S. Electrical Engineering, Colorado State University, 1976

Ph.D. Electrical Engineering, University of Washington, 1984

Publications

2000-present and while at APL-UW

Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider

Klinck, H., D.K. Mellinger, K. Klinck, N.M. Bogue, J.C. Luby, W.A. Jump, G.B. Shilling, T. Litchendorf, A.S. Wood, G.S. Schorr, and R.W. Baird, "Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider," Plos One, 7, e36128, doi:10.1371/journal.pone.0036128, 2012.

More Info

18 May 2012

In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle — a glider — equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species.

Gliders, floats, and robot sailboats: Autonomous platforms for marine mammal research

Mellinger, D.K., H. Klink, N.M. Bogue, J. Luby, H. Matsumoto, and R. Stelzer, "Gliders, floats, and robot sailboats: Autonomous platforms for marine mammal research," J. Acoust. Soc. Am., 131, 3493, doi:10.1121/1.4709197, 2012.

More Info

1 Apr 2012

Passive acoustic monitoring (PAM), now widely used for marine mammal research, is typically conducted using hydrophone arrays towed behind ships, providing real-time data from large areas over short time spans (days to weeks), or using fixed autonomous hydrophones, providing non-real-time data from small areas over long time spans (months to years). In contrast, mobile platforms can supply near-real-time data over spatiotemporal scales large in both space and time. These systems are deployed from a vessel, communicate via satellite with shore stations for navigation and control updates, and report in near-real time upon detecting marine mammal or other sounds of interest. Acoustically-equipped gliders are buoyancy-driven devices that are capable of traversing long distances (hundreds to thousands of kilometers) over weeks to months of autonomous operation. Autonomous floats such as QUEphones drift with currents or park on the seafloor, rising to the surface upon detecting sounds of interest. Robot sailboats such as the Roboat use wind to propel themselves quickly over long distances. All platforms can store large datasets and carry additional sensors (e.g., temperature, salinity, chlorophyll, pH, O2), and are therefore well-suited for investigating oceanographic and ecological questions. Advantages and disadvantages of these platforms for various applications will be discussed.

Passive-acoustic monitoring of odontocetes using a Seaglider: First results of a field test in Hawaiian waters.

Klink, H., D.K. Mellniger, M.A. Roch, K. Klinck, N.M. Bogue, J.C. Luby, W.A. Jump, J.M. Pyle, G.B. Shilling, T. Litchendorf, and A.S. Wood, "Passive-acoustic monitoring of odontocetes using a Seaglider: First results of a field test in Hawaiian waters." J. Acoust. Soc. Am., 129, 2536, doi:10.1121/1.3588409, 2011.

More Info

1 Apr 2011

In fall 2009 the University of Washington, Applied Physics Laboratory conducted in collaboration with the Oregon State University, a comprehensive field test of a passive-acoustic Seaglider along the western shelf-break of the island of Hawaii. During the 3 week mission, a total of approximately 170 h of broadband acoustic data [194 kHz sampling rate] were collected. The recordings were manually analyzed by an experienced analyst for beaked whale (Ziphiidae), dolphin (Delphinidae), and sperm whale (Physeter macrocephalus) echolocation clicks as well as echo sounder pings emitted by boats in the area. Here we present and discuss first results of these data analysis, which revealed that more than 50% of the recorded files (each of 1-minute duration) contain bioacoustic signals. Furthermore the recorded data and the results of the manual analysis are used to validate and optimize an automated classifier for odontocete echolocation clicks, which was developed in a collaborative effort with San Diego State University. The algorithm is intended to be implemented on the Seaglider to enable species identification by classifying detected echolocation clicks in (near) real-time during sea trials.

More Publications

An at-sea, autonomous, closed-loop concept study for detecting and tracking submerged objects

Stevenson, J.M., et al., including J. Luby, R.T. Miyamoto, M. Grund, G. Anderson, and M. Hazen, "An at-sea, autonomous, closed-loop concept study for detecting and tracking submerged objects," U.S. Navy J. Underwater Acoust., 59, 671-690, 2009.

1 Jun 2009

Acoustic sensor systems on a flying wing underwater glider and two prop-driven autonomous underwater vehicles

D'Spain, G., R. Zimmerman, S.A. Jenkins, D.B. Rimington, J.C. Luby, and P. Brodsky, "Acoustic sensor systems on a flying wing underwater glider and two prop-driven autonomous underwater vehicles," J. Acoust. Soc. Am., 123, 3007, doi:10.1121/1.2932590, 2008.

More Info

1 May 2008

The Marine Physical Laboratory, Scripps Institution of Oceanography operates several underwater vehicles including an autonomous underwater glider based on a flying wing design and two prop-driven autonomous underwater vehicles (AUV) manufactured by Bluefin Robotics. The objective of this presentation is to describe the acoustic sensor systems on these platforms and provide sample results from the at-sea data. The glider, with a 6.1-m wing span, was developed jointly by the Marine Physical Lab and the Applied Physics Laboratory, University of Washington. It is designed to maximize the horizontal distance traveled between changes in buoyancy (i.e., maximize its "finesse") while quietly listening to sounds in the ocean. A 27-element hydrophone array with 5 kHz per channel bandwidth is located in the sonar dome all along the wing's leading edge. In addition, it has a four-component acoustic vector sensor in its nose. The two prop-driven AUVs have been equipped with hull-mounted hydrophone arrays with 10 kHz bandwidth for passive synthetic aperture studies, an acoustic vector sensor, and active acoustic imaging systems for ocean bottom-subbottom mapping. Results from the data processing illustrate the tight coupling between acoustic sensor systems, signal array processing methods, and vehicle behavior.

Underwater acoustic measurements with a flying wing glider

D'Spain, G.L., R. Zimmerman, S.A. Jenkins, J.C. Luby, and P. Brodsky, "Underwater acoustic measurements with a flying wing glider," J. Acoust. Soc. Am., 121, 3107, 2007.

More Info

1 May 2007

Liberdade, a new class of underwater glider based on a flying wing design, has been under development for the past 3 years in a joint project between the Marine Physical Laboratory, Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington. This hydrodynamically efficient design maximizes the horizontal distance traveled between changes in buoyancy, thereby minimizing average power consumed in horizontal transport to achieve "persistence." The first fully autonomous glider of this class, "XRay," was deployed and operated successfully in the Monterey Bay 2006 experiment. Communications, including real-time glider status reports, were accomplished using an underwater acoustic modem as well as with an Iridium satellite system while on the surface. The payload included hydrophone array, with 10 kHz per channel bandwidth, located in a sonar dome along the leading edge of the 6.1-m-span wing. Narrowband tones from 3.0 to 8.5 kHz were transmitted from a ship-deployed controlled underwater source. During the glider's flight, lift-to-drag ratios (equal to the inverse of the glide slope) exceeded 10/1. However, specific flight behaviors that deviated from this efficient horizontal transport mode allowed for improved detection and localization by the hydrophone array.

Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection

D'Spain, G.L., J.E. Luby, G.R. Wilson, and R.A. Gramann, "Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection," J. Acoust. Soc. Am., 120, 171-185, doi:10.1121/1.2207573, 2006.

More Info

1 Jul 2006

This paper examines array gain and detection performance of single vector sensors and vector sensor line arrays, with focus on the impact of nonacoustic self noise and finite spatial coherence of the noise between the vector sensor components. Analytical results based on maximizing the directivity index show that the particle motion channels should always be included in the processing for optimal detection, regardless of self noise level, as long as the self noise levels are taken into account. The vector properties of acoustic intensity can be used to estimate the levels of nonacoustic noise in ocean measurements. Application of conventional, minimum variance distortionless response, and white-noise-constrained adaptive beamforming methods with ocean acoustic data collected by a single vector sensor illustrate an increase in spatial resolution but a corresponding decrease in beamformer output with increasing beamformer adaptivity. Expressions for the spatial coherence of all pairs of vector sensor components in homogeneous, isotropic noise show that significant coherence exists at half-wavelength spacing between particle motion components. For angular intervals about broadside, an equal spacing of about one wavelength for all components provides maximum directivity index, whereas each of the component spacings should be different to optimize the directivity index for angular intervals about endfire.

FutureGlider: Next Generation Autonomous Underwater Vehicle for Covert Monitoring of Shallow Water Areas

Luby, J.C., "FutureGlider: Next Generation Autonomous Underwater Vehicle for Covert Monitoring of Shallow Water Areas," APL-UW TM 1-05, May 2005.

30 May 2005

Underwater acoustic measurements with the Liberdade/X-Ray flying wing glider

D'Spain, G.L., S.A. Jenkins, R. Zimmerman, J.C. Luby, and A.M. Thode, "Underwater acoustic measurements with the Liberdade/X-Ray flying wing glider," J. Acoust. Soc. Am., 117, 2624, 2005

More Info

2 Apr 2005

An underwater glider based on a flying wing design (Jenkins et al., 2003) presently is under development by the Marine Physical Laboratory, Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington. This design maximizes the horizontal distance between changes in buoyancy to minimize mechanical power consumed in horizontal transport. The prototype wing has a 6.1 m wing span and is 20 times larger by volume than existing gliders. Initial at-sea tests indicate that the lift-to-drag ratio is 17/1 at a horizontal speed of about 1.8 m/s for a 38-liter buoyancy engine. Beamforming results using recordings of the radiated noise from the deployment ship by two hydrophones mounted on the wing verify aspects of the prototype wing flight characteristics. The payload on the new glider will include a low-power, 32-element hydrophone array placed along the leading edge of the wing for large physical aperture at midfrequencies (above 1 kHz) and a 4-component vector sensor. Data previously collected by these types of arrays illustrate the performance of narrow-band detection and localization algorithms. Flight behaviors are being developed to maximize the arrays' detection and localization capabilities.

Innovative 3D Visualization of Electro-optic Data for Mine Countermeasures

Brodsky, P.M., J.C. Luby, and J.I. Olsonbaker, "Innovative 3D Visualization of Electro-optic Data for Mine Countermeasures," APL-UW TR 0401, March 2004.

30 Mar 2004

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close