Campus Map

Alice Della Penna

Research Associate






B.S. Physics, University of Turin, 2010

M.S. Physics of Complex Systems, University of Turin, 2012

Ph.D. Interdisciplinary Approaches to Life Sciences, Paris Diderot University, 2016

Ph.D. Quantitative Marine Science, University of Tasmania, 2016


2000-present and while at APL-UW

Mesoscale eddies structure mesopelagic communities

Della Penna, A., and P. Gaube, "Mesoscale eddies structure mesopelagic communities," Front. Mar. Sci., 7, 454, doi:10.3389/fmars.2020.00454, 2020.

More Info

8 Jul 2020

Mesoscale eddies play a key role in structuring open ocean ecosystems, affecting the entire trophic web from primary producers to large pelagic predators including sharks and elephant seals. Recent advances in the tracking of pelagic predators have revealed that these animals forage in the mesopelagic and the depth and duration of their foraging dives are affected by the presence of eddies. The ways in which eddies impact the distribution of mesopelagic micronekton, however, remain largely unknown. During a multi-seasonal experiment we used a shipboard scientific echosounder transmitting at 38 kHz to observe the distribution of acoustic backscattering in the energetic mesoscale eddy field of the northwestern Atlantic. Observations were collected at 24 stations with 6 located in anticyclonic and 7 in cyclonic eddies. The sampled anticyclonic eddies are characterized by intense acoustic backscattering in the mesopelagic and changes in the intensity of acoustic backscattering layers match gradients of surface properties. Furthermore, mesopelagic daytime backscattering is positively correlated with sea level anomaly. These results suggest that anticyclonic eddies in the northwestern Atlantic impact the distribution of mesopelagic micronekton and may have the potential to locally enhance or structure spatially mesopelagic communities.

Small phytoplankton dominate western North Atlantic biomass

Bolaños, L.M., and 15 others including A. Della Penna and P. Gaube, "Small phytoplankton dominate western North Atlantic biomass," ISME J., 14, 1663-1674, doi:10.1038/s41396-020-0636-0, 2020.

More Info

30 Mar 2020

The North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar- and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20-μm diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which pico- and nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms.

Detecting mesopelagic organisms using biogeochemical-Argo floats

Haëntjens, N., A. Della Penna, N. Briggs, L. Karp-Boss, P. Gaube, H. Claustre, and E. Boss, "Detecting mesopelagic organisms using biogeochemical-Argo floats," Geophys. Res. Lett., 47, doi:10.1029/2019GL086088, 2020.

More Info

28 Mar 2020

During the North Atlantic Aerosols and Marine Ecosystems Study in the western North Atlantic, float‐based profiles of fluorescent dissolved organic matter and backscattering exhibited distinct spike layers at ~ 300 m. The locations of the spikes were at depths similar or shallower to where a ship‐based scientific echo sounder identified layers of acoustic backscatter, an Underwater Vision Profiler detected elevated concentration of zooplankton, and mesopelagic fish were sampled by a mesopelagic net tow. The collocation of spike layers in bio‐optical properties with mesopelagic organisms suggests that some can be detected with float‐based bio‐optical sensors. This opens the door to the investigation of such aggregations/layers in observations collected by the global biogeochemical‐Argo array allowing the detection of mesopelagic organisms in remote locations of the open ocean under‐sampled by traditional methods.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center